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Chapter 1

Introduction to
Digital Signal Processing

1.1 Introduction

1.1.1 Signal and Signal Processing

A signal is defined as “any physical quantity which varies with one or more independent
variables like time, space”. Mathematically it can be represented as a function of one or
more independent variables. For example, the function

s(t) = 2t L (LLD)

describes a signal, which varies linearly with the independent variable t (time). ‘Speech’
signal is an example, which varies with single independent variable.

Consider the function
s(x, y) =2x + 3y + 5xy .....(1.1.2)

This function describes a signal, which varies with two independent variables x and y.
‘Image’ is a signal which varies with two independent variables.

Most of the signals encountered are analog in nature i.e., they vary with continuous
variable, such as time or space. “Processing of these signals by analog systems such as a
filters or frequency analyzers or frequency multipliers for the purpose of changing their
characteristics or extracting some desired information is called Signal Processing”. In this
case both the input signal and the output signal are in analog form, which is shown in
Fig. 1.1.

Analog Analog Analog
input —— signal — output
signal processor signal

Fig. 1.1 Analog signal processing.
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1.1.2 Basic Elements of Digital Signal Processing Systems

Digital Signal Processing is an alternative method to process an analog signal. It requires
an interface between an analog input and digital signal processor, called an analog-to-
digital (A/D) converter. We should provide another interface between digital signal
processor and an analog output signal called a digital-to-analog (D/A) converter as shown
in the Fig. 1.2.

Analog Analog
input ———  ADC DSP DAC +—— output
signal | ‘ signal

Digital Digital

input output

signal signal

Fig. 1.2 Block diagram of basic DSP system.

The ADC or analog-to-digital (A/D) converter contains a sampler, quantizer and an
encoder. Sampler takes an analog signal, samples it with a predefined sampling period
and gives out discrete-time signal, which is discrete in time domain and continuous
(varying) in amplitude. This signal contains different number of amplitude levels.
Quantizer approximates these different levels with fixed number of levels by rounding or
truncating the values. For example, if the allowable signal values in the digital signal are
integers, say 0 to 7, the continuous-amplitude signal will be quantized into these integer
values. Thus the signal value 5.63 will be approximated by the value 6 if the quantization
process is performed by rounding to the nearest integer or by 5 if the quantization process
is performed by truncation. The encoder converts these set of integer into digital form
(i.e., binary form).

The digital signal processor may be a large programmable digital computer or a small
microprocessor or a hardwired digital processor to perform the operation on the digital
signal i.e., on the output of encoder. Hardwired digital processor performs a specified set
of operations on the digital signal i.e., reconfiguring is difficult with the hardwired
machines, where as programmable machines provide flexibility to change the operations
through a change in the software.

The output of DSP block is digital signal. Digital to analog converter converts digital
signal into an analog signal, which may not be required on some applications like
extracting information from the radar signal, such as the position of the air-craft and its
speed, may simply be printed on paper.
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1.1.3 Advantages of Digital Signal Processing over Analog Signal

Processing

There are many reasons why digital systems are preferred over an analog system. Some
of the advantages are:

(a)
(b)

(©)
(d)

(e)
()
(€9)
(h)
@)

Noise Immunity: Digital systems are more immune to noise compared to an
analog systems.

Arbitrarily High Accuracy: Tolerances in analog circuit components make
difficult to control the accuracy of an analog systems, where as digital systems
provide much better control of accuracy.

High Reliability: Digital systems are more reliable compared to an analog
systems.

Software Manipulation: Digital signal processing operations can be changed by
changing the program in digital programmable system, i.e., these are flexible
systems.

Integration of Digital Systems: Digital systems can be cascaded or integrated
easily without any loading problems.

Storage of Digital Signals: Digital signals are easily stored on magnetic media
such as magnetic tape without loss of quality of reproduction of signal.
Transportable: As digital signals can be stored on magnetic tapes these can be
processed off time i.e., these are easily transported.

Digital systems are independent of temperature, ageing and other external
parameters.

Cheaper: Cost of processing per signal in DSP is reduced by time-sharing of
given processor among a number of signals.

Disadvantage of digital systems is that they are not faster compared to analog systems.

1.2 Discrete Time Signals and Sequences

Discrete-time signals or sequences, which are discrete in time domain and continuous in
amplitude, can be obtained by sampling continuous time or analog signals as shown in

Fig. 1.3.
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A x(n) : discrete-time signal

1.6 1|-7 20 45

| | ]
-2 -1 0 1 2

)
v

-12

-15

Fig. 1.3 Obtaining discrete-time signal from analog signal.

1.2.1 Representation of Discrete-Time Signals

Discrete-time signals can be represented as follows by using the four methods

(i)
(ii)
(iii)
(iv)

Graphical Representation
Functional Representation
Tabular Representation
Sequence Representation

(1) Graphical Representation: Discrete-time signals can be represented by a graph when

the signal is defined for every integer value of n for —oco < n < oo. This is shown in
Fig. 1.4.

x(n)

3.0 0 3.0

35,
1.0 ‘ ‘

-2 -1 0 1 2

Fig. 1.4 Graphical representation of a discrete-time signal.

il) Functional Representation: Discrete-time signals can be represented functionally as
P g p y
given below

1, forn=0,1
( ) 2, forn=2
x(n)=
3, forn=-1

0, elsewhere
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(i) Tabular Representation: Discrete-time signals can be represented by a table as

no| o | 2] -1]0]1]2
x(n) 1|2 (|3]1]2

(iv) Sequence Representation: An infinite-duration (—oo <n< oo) signal with the time as

origin (n = 0) and indicated by the symbol T, if symbol is not shown in
representation, origin is at the beginning of the sequence.

( )z{....l, 2,3,4, 2,...}
x(n 2

x(n)=1{2,3,1,4}

Here origin is the first position i.e., x(0) = 2.

1.2.2 Elementary Discrete-Time Signals

There are some basic signals which play an important role in the study of discrete-time
signals and systems. These are:

(i) Unit-sample (Cronekar) Sequence, 5(n) (or) Impulse sequence
(i) Unit-step Sequence, u(n)

(ii1)) Unit-ramp Sequence, r(n)

(iv) Exponential Sequence

(1) Unit-sample Sequence: This is illustrated in Fig. 1.5, it is denoted with &(n) and is
defined as

I, n=0

8(n):{o, n#0

-2-10 1 2 n

Fig. 1.5 Graphical representation of 3(n).

(i) Unit-step Sequence: 1t is denoted by u(n) and is defined as

u(n):{l’ n>0

0, n<0

This is shown in Fig. 1.6.
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-2-1 0 1 2 n

Fig. 1.6 Graphical representation of u(n).

(i) Unit-ramp Sequence: It is denoted by r(n) and is defined as

( )_ n, for n>0
= 0, for n<0

This is shown in Fig. 1.7.

r(n)
2
1 I ------------
2 10 1 2 n

Fig. 1.7 Graphical representation of r(n).

(iv) Exponential sequence: 1t is defined as x(n) = a" for all values of n.

If the parameter ‘a’ is real, then x(n) is a real sequence. Fig. 1.8 illustrates this

sequence.

3
A x(n) /)

/

x(n) N

4 a>1
7
O0<a<l1 _
{ 28
012345 n 0123 435 n

Fig. 1.8 Graphical representation of exponential sequence.

Example 1.1: Let e(n) be an exponential sequence and let x(n) and y(n) denote two
arbitrary sequences. Show that

[e(n) .x(n)] * [e(n) .¥(n)] = e(n) . [x(n) * y(n)]

Solution: Given e(n) is an exponential sequence
e(n) =a"
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We know that linear convolution of x;(n) and x, (n) as (* is symbol for linear
convolution)

o0

X, (n)*x,(n)= z x;(k)x, (n—k)

k=00
In our problem x;(n) = e(n) . x(n)
=a" x(n)
and x,(n) =e(n).y(n)
=a" y(n)

Hence proved

1.2.3 Manipulation of Discrete-Time Signals

Here we study some simple modifications on independent variable (time) and dependent
variable (amplitude of signal). Such modifications are required in DSP techniques.
Modification of the Independent variable (time): This can be done in three ways.
(i) Time shifting
(i) Folding
(ii1) Time scaling
(1) Time Shifting: A signal can be shifted right side or delayed by replacing n by n — k.
and is shifted left side or advanced by replacing n by n + k, where k is integer and n

is a discrete-time index. This is shown in Fig. 1.9.
x(n—1)

x(n)

-2-10 1 2 3 n
Delayed sequence by one unit in time i.e., k =1

(@) (b)
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-3-2-10 1 2 3 n

Advance sequence by one unit in time i.e., k =1

(©)

Fig.1.9 (a) Original sequence (b) Delayed by one unit version of original sequence
(c) Advanced sequence by one unit version of original sequence.

(i) Folding: If independent variable (time) n is replaced by — n, then signal folding
(mirror image) about the time origin (n = 0) takes place. This is shown in Fig. 1.10.

e X(-n)
2 2
1 1 1 1
S I LR
-1 0 1 ! -1 0 1 n
(a) (b)

Fig. 1.10 (a) Original sequence (b) Folded version of original sequence.

(iii) Time Scaling: Time scaling is performed by replacing independent variable n by
kn, where k is an integer. This is shown in Fig. 1.11.

x(2n)
x(n) 3
5 2
-2-10 1 2 n
-4-3-2-10 1 2 3 4 n Scaled by 2 i.e., k=2
(a) (b)

Fig. 1.11 (a) Original sequence (b) Scaled version of original sequence.

Modification of the Dependent Variable (Signal Amplitude):

Signal amplitude can be modified in three ways.
(i) Addition of sequences

(i) Multiplication of sequences

(iii)) Amplitude scaling of sequence
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(1) Addition of Sequences: The sum of two discrete time sequences is given by
y(n) =x(n) + xx(n), o0 <n< oo
This is shown in Fig. 1.12 (a)
(1) Multiplication of Sequences: The product of two discrete time sequences is given by
y(m) = x,(n) . xx(n), o0 <n< oo
This is shown in Fig. 1.12 (b)

(i) Amplitude Scaling of Sequences: Amplitude scaling of a signal by a constant A is
accomplished by multiplying the value of every signal sample by A.

y(n) = A x(n), 0 <n< o

where A is real constant quantity

X, (n)
X, (n)
1
-3-2-10 1 2 3 n el it (RN RN RN e n
First sequence Second sequence
X, (n) +x, (n) x,(n) * X, (n)
2 2
1
-3-2-10 1 2 3 n -3-2-10 1 2 3 n
(a) (b)

Fig. 1.12 (a) Addition of sequences (b) Multiplication of sequences.

1.2.4 Classification of Discrete-Time Signals
Discrete-time signals are classified based on number of different characteristics as
follows:

(1) Energy signals and power signals

(i1) Periodic signals and Aperiodic signals

(iii) Symmetric (Even) and Antisymmetric (odd) signals.
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(@)

(i)

(iii)

Energy Signals and Power Signals
The energy E of a signal x(n) is defined as E = Z |x(n)

n=-—0w

i (12.0)
Here x(n) may be either complex or real valued signal; E may be finite or infinite.

If E is finite, then x(n) is called energy signal. Many signals that posses infinite
energy have a finite average power.

Average power of a signal x(n) is defined as

. 1 N 2
P,, = lim 2N+1n;N|X(n)| (12.2)

If E is finite, P,, =0

If E is infinite, P,, may be either finite or infinite if P,, is finite, then x(n) is called a
power signal.

Periodic Signals and Aperiodic Signals

If a signal x(n) satisfies the condition x(n) = x(n + N), where N is period then the
signals is periodic signal, otherwise it is nonperiodic or aperiodic signal.

Consider a sinusoidal signal cos(won + ¢) , it will be periodic only if 2n is an
@

. 2n . . . . .
integral number. If — 1is a rational, then the function will have a period longer
®

2
than il .
(O

2n . . . Ll
If — is not a rational number, it will not be periodic at all.

Oy

The energy of a periodic signal over a single period, say 0 <n <N — 1, is finite, but
energy of periodic signal for —co< n < oo is infinite. On the other hand, the
average power of the periodic signal is finite.

". Periodic signals are power signals.
Even signals and Odd signals
A real valued signal x(n) is called symmetric (even)
If x(n) = x(—n) n(1.2.3)
On the other hand, a signal x(n) is called anti symmetric (odd),
if x(—n) = —x(n) .....(1.2.4)
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Any real sequence can be written as

x(n)=x,(n)+x,(n)
where x_(n) is odd part of x(n)
and x,(n) is even part of x(n)

X.(n) can be written as
xe(n)zé[x(n)+x(—n)] .....(L.2.5)
and X,(n)= %[x(n) - x(—n)]

Similarly for complex sequence
Condition for symmetry is x(n) = x*(— n)

where * denotes conjugation
And for Anti-symmetry is x(n)=-x"(-n)

Any complex sequence can be written as

x(n)=x,(n) +x,(n)

where X.(n)= %[x(n) +x* (—n)] ...... (1.2.6)

and x,(n) =%[x(n)x*(n)]
Example 1.2: Show that the even and odd parts of a real sequence are, respectively, even
and odd sequences. [JNTU 2002]
Solution: Let x(n) be real sequence, which can be written as
x(m) =X, () + X, (n)

where x_(n) is odd part of x(n) and x,(n) is even part of x(n)

We know that x_(n) = %[x(n) + x(—n)] and x_ (n)= %[x(n) — X(—n)]

We have to show that even part (x.(n)) of x(n) is a even sequence i.e., it should satisfy

X, (n) =X, (-n)

Consider x,(n)= %[x(n) +x(-n)]
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take X.(—n) = %[x(—n) + x(n)]

= %[x(n) + x(—n)]

X (—n) =X, (n)
Hence proved.

Similarly we have to show that odd part (x,(n)) of x(n) is a odd sequence i.e., it
should satisfy x_(n)=-x_,(-n)

Consider x,(n)= %[x(n) —x(-n)]
take x,(-n)= %[x(fn) —x(n)]

= —%[x(n) —x(-n)]

Xo (_n) = _Xo (n)

Hence proved.

1.3 Linear Shift Invariant System, Stability and Causality

Before going to discuss linear shift invariant systems, stability and causality, let us define
discrete time system. A discrete time system is a device or an algorithm that operates on a
discrete time signal, called the input or excitation, according to some well-defined rule, to
produce another discrete time signal called the output or response of the system.

We say that the input signal x(n) is transformed by the system into a signal y(n). These
two can be related as

y(n) =H[x(n)] cn(13.0)
This is shown graphically in Fig. 1.13.

X(n) Discrete-time y(n)
Input signal System 1 Output signal
or or

Excitation Response

Fig. 1.13 Discrete time system.
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1.3.1 Basic Building Blocks of a Discrete Time System

There are three basic building blocks of a discrete time system.
(i) Adders or summing element
(i1) Multipliers
(ii1) Delay Elements

(1) Adders: It performs addition of two or more discrete-time signals as shown in
Fig. 1.14(a).
(1) Multipliers: There are two types of multipliers (a) constant multiplier (b) signal

multiplier. A signal multiplier performs multiplication of two or more discrete-time
signals as shown in Fig. 1.14(b).

A constant multiplier performs multiplication of a discrete-time signal with a scalar
quantity as shown in Fig 1.14(c).

(ii1) Delay Elements: There are two types of delay elements

(a) positive delay element, which is indicated by z' (b) negative delay elements,

which is indicated by z" (or) advance element. Positive and negative delay
elements provide delay as shown in Fig. 1.14(d) and (e) respectively.

X, (n)
@ ¥() = x, () +x, () ‘ ¥ = X, (1) . X, (n)
X, (n) X, (n)
(a) (b)
&[>A—> y=Ax@ D Al s ym=xa-D
(c) (d)
N
Z > ym)=x(n+1)
(e

Fig. 1.14 (a) Adder (b) A signal multiplier (c) A constant multiplier
(d) A unit delay element (e) A unit advance element.

1.3.2 Classification of Discrete-Time Systems

Discrete-time systems can be classified into
(i) Static (memory less) systems and Dynamic (systems with memory )systems.
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(i) Time-invariant and Time-varying systems
(ii1)) Linear systems and Non-linear systems
(iv) Causal systems and Non-causal systems
(v) Stable systems and Unstable systems.

(1) Static and Dynamic Systems: Static systems are also called memory less systems.
A discrete-time system is called memory less system if its output at any instant n
depends at most on the input at the same instant, but not on past or future values of
input samples.

Example:
y(n) = Ax(n)

) } Both systems are static systems
y(n) =n x(n)+ Ax (n)

On the other hand, output of a system which depends on past or future samples of the
input signal is called dynamic system. It is also called a system with memory. These
systems require memory for storage for future and past samples of input signal.

Example:
y(n)= x(n)+x(n+1)+x(n-1)
is a dynamic system.

(i) Time-invariant and Time-varying systems: A system is called time-invariant if its
input-output characteristics do not change with time.

If the response to a delayed input, and the delayed response are equal then the system
is called time-invariant system (or) shift invariant system.

The response to a delayed input is denoted by y(n, k)and the delayed response is
denoted by y(n—k). If both responses y(n,k) and y(n—k) are equal then the system is
called time-invariant system. If both responses are not equal then the system is called
time-varying system.

Example 1.3: Check the following system for Time-invariance
y(n)=x(n)+n x(n—1)

Solution: The response to a delayed input is
y(n, k)=x(n-k)+n x(n—-k-1)

The delayed response is

y(n—-k)=x(n-k)+(n-k)x(n—-k-1)

both responses are not equal

ie., y(n,k) # y(n —k)

Therefore the given system is not a Time-invariant system. It is a Time-varying system.
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Example 1.4: Check the following system for Time-invariance
y(n)=x(n)+x(n-1)
Solution: The response to a delayed input is
y(n, k)=x(n-k)+x(n—1-k)
The delayed response is
y(n—k)=x(n—k)+x(n-k-1)

both responses are equal. Hence given system is a Time-invariant system.

(iil)  Linear and Non-linear Systems: A system which satisfies superposition principle
is called a linear system. A system which does not satisfy superposition principle
is termed as a non-linear system.

Superposition principle is stated as

“Response of the system to a weighted sum of input signals be equal to the
corresponding weighted sum of responses of the system to each of the individual input
signals”.

A system is linear if and only if
H[ax,(n)+ bx,(n)]=aH[x,(n)]+ b H[x,(n)] .....(1.3.2)
where x,(n) and x,(n) are arbitrary input signals and a and b are arbitrary constants.

Example 1.5: Check the following systems for Linearity.

i) y(n)=x(n) Gi) y(n)=¢"
Solution:

(1)  The corresponding outputs for two discrete-time sequences x,(n) and x,(n) are
yi(m)=x,(n")
y2(m) =x,(n")
A linear combination of two input sequences results in the output
ys3(n) =H[x;(n)]=Hla x,(n) +b x, (n)]
=x;(n’)=ax,(n’)+bx,(n") ()
A linear combination of the two outputs results in the output
ay,()+by,(n)=ax,(n’)+bx,n’) ......(ii)
Since both outputs are equal, the system is linear.

(i1)  The corresponding outputs for two discrete-time sequences x,(n) and x,(n) are
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ym=e""

X5 (n)
y,(m)=e”
A linear combination of x,(n) and x,(n) results in the output.

ax; (n)+bx, (n)

y;(n) =H [x;(n)]=H[a x,(n) +b x,(n)]=¢ .....(1ii)
Linear combination of the two outputs results in the output
ay (n)+by,(n)= ae"'™ +b " voen(lv)

Here both outputs i.e., equations (iii) and (iv) are not equal, hence the system is
non-linear.

(iv) Causal and Non-causal Systems: A system whose present output depends only on
present and past inputs, but not on future inputs is called a causal system. If a system
response depends on future values, then it is a non-causal system.

Example:

(i) ym)=x(n)+x(n+1)
Since response depends upon a future value (x(n-+1)), it is a non-causal
system.

(i) y(n)=x(n)+x(n-1)
Since response does not depend upon future values, it is a causal system.

(i) y(n)=x(-n)
Take n = —1, then y(-1) = x(1), which is a future value i.e., it depends on
future values. Hence the system is a non causal system.

(iv) y(n)=x(n?) and y(n)=x(2n)
Take n = 2, then y(2) = x(4) in both the systems which is a future value.
Hence both systems are non causal systems.

(v) Stable and Unstable Systems: A system which produces bounded (finite) output for
a bounded (finite) input is called as stable system, otherwise it is called as an
unstable system. Examples will be discussed in the section 1.3.5.

1.3.3 Representation of Discrete Time Signal as Summation of
Impulses

Graphical representations of impulse sequences and its shifted versions are shown in Fig.
1.15 (a) (b) and (¢).

Let us consider a sequence
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x(n) = {1,1,2,3}
T

which is shown graphically in fig 1.15 (d)

5(n) A
d(n—-k)
1
1
0 —n 0 k—n
(@) (b)
x(n)
3 _____
2 e
]
-1 0 1 2 ;1

Fig. 1.15 (a) Impulse sequence (b) Shifted towards right (c) Shifted towards left
(d) A general sequence.

product of x(n) and 6(n) gives x(0)

ie., x(n) 6 (n) =x(0) — x(0) & (n) =x(0)

similarly x(n)d(n—-1)=x(1) »> x(1) 6 (n—1)=x(1)
x(n)d (n—2)=x2) > x(2) 6 (n—-2)=x(2)
x(n)d(n+1)=x(-1) > x(-1)dm+1)=x(-1)

.. This can be written as

x(n)= Y x(k)3(n-k) (13.3)
k=-o0
Example: Represent the sequence x(n) = {2,3,5} as sum of impulse sequences
1

Solutionis x(n) =28 (n+1)+338(m)+53(n—1)

1.3.4 Response of Linear Time Invariant (LTI) System

Fig. 1.16 shows an LTI system with an excitation x(n) and response y(n).

x(n) H > y(n)

Fig. 1.16 A discrete time LTI system.
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Unit sample response (or) Impulse response: It is defined as “response of a system when
input signal is impulse sequence”, impulse response is denoted with h (n)

i.e., when x(n) =06 (n) — y(n) =h(n)
Since it is a time invariant system, when impulse sequence is delayed by k, response
i.e., h (n) should be delayed by k.
: d(n—-k) - h(n—k)
This also can be written as h(n — k) = H [6(n — k)]
Response of an LTI (Linear Time Invariant) system is
y(n) = H [x(n)] ..(1.3.4)

we known that x(n) can be represented as sum of impulse sequence as in eqn. (1.3.3).

o0

ie., x(n)= ) x(k)8(n-k)

k=—0

Substitute this in the equation (1)

s(a)=H] 3 x()3(0-1)

= 3% x(k) H[s(n k)]
y(n)= i x(k)h(n—-k) (135)

which is an equation for convolution of x (n) and h (n).

Hence the response of an LTI system is convolution of input sequence and impulse
response.

Example 1.6: Consider a discrete linear shift invariant system with unit sample response
h(n). If the input x(n) is a periodic sequence with period N i.e., x(n) = x(n + N), show that
the output y(n) is also a periodic sequence with period N.

Solution: Given x(n) = x(n + N)

We known the response of an LTI (or) Liner shift invariant system as

o0

y(n)= 2 x(k)h(n-k)

also y(n)zkiwh(x)x(n—k)
consider y(n+N)= i h(k)x(n+N-k)

k=—0
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given x(n) = x(n + N)
delay it by k
then X(n—k)zx(n+N—k)

y(n+N)= > h(x)x(n-k)

k=—0
=vy(n)
Hence the output is also periodic when input is periodic

1.3.5 Stability of an LTI System
Let x(n) is input sequence, assume that it is finite with a value M.

Response of an LTI system is

0

y(n)= 2 x(k)h(n-k)

k=—x

=kih(k)x(n_k)

Take absolute on both sides

|y(n)|ski|h(k)| [x(n—K)|

SMxk_i [h(k)| ce(1.3.6)

According to definition for stability, for a finite input sequence, system should
produce finite output.

From eqn (1.3.6), to get finite output, Z |h(k)| must be finite

k=—

Hence an LTI system is stable if its impulse response (or) unit sample response is
absolutely summable.

Example 1.7: Test the stability of the following systems
() y@m=x(-n-2) (i) y()=nx(n)
Solution: We know that when x(n) =  (n), the output y(n) = h(n)
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i - h(n) =8(-n-2)
n=0->38(-2)=0=h(0); n=-1-38(-1)=0=h(-1)
n=1-38(-3)=0=h(1); n=-2->38(0)=1=h(-2)

n=00—>8(oo)=0=h(oo); n=—oo—>8(—oo)=0=h(—oo)

ni|h(n)| <o

o System is stable
(i1) h(n) =n d(n)
n=0-h(0)=0(1)=0; n=-1 — h(-1)=-1(0)=0

n=1->h(1)=1(0)=0; n=-2 — h(-2)=-2(0)=0

i|h(n)|=0+oJr ..... 020

n=-w
System is stable

Example 1.8: Determine the range of values of the parameter ‘a’ for which the LTI
system with impulse response h(n) = a" u(n) is stable.

Solution: Condition for a system to be stable is

Sl =1+[a] +|af +----

n=0

This infinite series converges to

if |a|<1

1=]a]
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Range of values of parameter ‘a’ is |a| <1

Example 1.9: Determine the range of values of ‘a’ and ‘b’ for which LTI system with

) a", n>0
impulse response h(n)= is stable
b", n<0

o -1 o0
Solution: Y |h(n)= 2 b+ Y a"
n=-wo n=-w n=0

Put n=-1 in first series

Il
—/
o |~

J’_

|

J’_
~—

+

_—

J’_

o

J’_

o

[\S]

J’_

N —

1 1 1 . l<landa<1
if 4b

b>landa<1

Range of values of ‘a’ and ‘b’ are b>1and a<1
Example 1.10: A wunit sample response of a linear system is given by
h(n) :(n+b)a“, n>0
=0,n<0

For what values of ‘a’ and ‘b’ the system will be stable?

o0

Solution: Z(n+b)a“ = in a" + ib a"
n=0 n=0

n=0

=(0+a+232+3a3+ ~~~~~ )+b(1+a+a2+ ~~~~ )

=a(1+2a+3a2+ ----- )+b—

1 b . ) )
=a +—— ifa < land b must finite to become series

(l—a)2 l-a

finite
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Values of ‘a’ and ‘b’ area<1and b < «©

1.4 Linear-Constant Coefficient Difference Equations

We know that continuous time systems are described by differential equations. But
discrete-time systems are described by difference equations.

Input-output relation of N™ order discrete-time system can be written as

N M
Zak y(n—k)szX x(n-k) ~(140)
k=0 k=0

where y(n) is output

x(n) is input

and a, and by are constant coefficients. Order of the system is determined by L.H.S
summation since input-output relation is linear with constant coefficients, this equation is
called “Linear-constant coefficient difference equation” for N™ order.

There are two methods by which difference equations can be solved

1. Direct Method: This method is directly applicable in the time domain. We
are not discussing this method

2. Indirect Method: It is also called z-transform method. This method will be
discussed in the chapter 3.

1.5 Frequency Domain Representation of Discrete-Time Systems
and Signals

1.5.1 Frequency Domain Representation of Discrete-Time System

System function (or) transfer function of a system can be obtained by taking Z-transform
(for Z-transform refer chapter 3) of impulse response h(n)

i.e., system function = H(z) = z h(n)z™" ....(L.5.1)

n=-—o

system function can also be defined as ratio of z-transform of response to z-transform of
input with zero initial conditions.

ie., H(z) = % ....(1.5.2)

Frequency response of a system can be obtained just by putting z = ¢ in equation
(1.5.1).
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ie., H() = H(w) = i h(n) ¢7" ...(1.5.3)

n=-—oo

Magnitude spectrum of a system is obtained by taking modulus of H(¢') i.e., |[H(e'®)|
Phase spectrum of a system is obtained by

0= tan"' | Hi(® (1.5.4)
H, (w)
where Hi(w) = Imaginary part of H(®)

H,(®) = Real part of H(w)

1.5.2 Frequency Domain Representation of Discrete-Time Signals
Let us consider any discrete-time sequence say x(n)

Frequency domain representation of this sequence can be obtained by taking
z-transform of x(n) and putting z = '*.

o0

ie., X(@z)= Y x(n)z"

n=-oo
where x(z) is z-transform of x(n)

put z=¢"

X( &) =X(0) = i x(n) e "

n=-oo
which is frequency domain representation of x(n).

Example 1.11: An LTI system has unit sample response h(n) = u(n) — u(n—N). Find the
amplitude and phase spectra.

Solution:
u(n) —u(n—N)
u(n) u(n)
1 1 1
by 11--
012 —>n o] N —>n o] 12 N-1 —n

h(n)=1, n=0toN-1

from the figures shown

N-1
H(z) = Zl. z "
n=0
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_ Ao

Frequency respd Finite Geometric Series |z =

1_ 7j(JJN
H(w) = 1€—7m

—_e)

—joN joN —joN

e 2 e 2 —e 2
—jo( jo o —jo
e?2 |e2 —e2

Magnitude spectra is

.(mNj
sin| =~
|- 2

Phase spectra is

H(o :9:—%(N—1)

Review Questions
1. Pick the signal which varies with single independent variable.
(@) Speech  (b) Image (c) S=2x+6xy (d) S=3x’ Ans:[b]
2. Pick the signal which varies with two independent variables.
(@ Image (b) S=2 (c) Speech (d S=2t+3¢
Ans: [c]
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3.

10.

11.

Which of the following is not an analog system?

(a) Frequency analyzers (b) Analog filters
(©) Frequency multipliers (d) Programmable machines
Ans: [d]
Which of the following is not a block in basic DSP system?
(a) ADC (b) Digital signal processor
(©) Analog signal processor (d) DAC Ans: [c]
Which of the following is not a part of an analog-to-digital converter?
(a) Sampler (b) Decoder (c) Encoder (d) Quantizer Ans: [b]
The following is the disadvantage of digital systems
(a) Cost (b) Speed (c) Transportability (d) Noise immunity
Ans: [b]

Discrete-time signal is

(a) Discrete both in time and amplitude

(b) Discrete in time and continuous in amplitude

(¢)  Continuous in time and discrete in amplitude

(d)  All the above Ans: [b]
Digital signal is

(a) Discrete both in time and amplitude

(b)  Continuous in time and discrete in amplitude

(c) Discrete in time and continuous in amplitude

(d)  All the above Ans: [a]
Discrete-time signal can be represented by

(a)  Graphical method (b) Functional method

(¢)  Sequence method (d) All the above Ans: [d]
The other name of unit impulse sequence

(a)  Unit-sample sequence (b) Unit-step sequence

(¢)  Unit ramp sequence (d) All the above Ans: [a]

Unit step sequence is defined as

1 n=0 1 n=0
(@ x(n)= {0 (b) X(n)={

nz0 0 n<O

n>0 n>0

0
© x(n)= {3 @  x(n)= {1 Ans: [b]

n<0 n<0
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12.

13.

14.

15.

16.

17.

18.

19.

20.

Unit impulse is defined as

{1 n=0 b {1 n=0

(@)  x(n)= 0 0 ®  xm= 0 <0
n=0 d |0 n=0 s:

©  xm=3, . 0 @ xm=y ns: [a]
Unit ramp is defined as

{1 n=0 b {1 n=0
@ xm= 0 n=0 ®) x(@)= 0 n<0

|1 nz0 d /0 n=0 Ans:
(¢)  x(m)= 0 n<0 (d  x(m= | n<o0 ns: [c]

Exponential sequence a" is decaying when

(a) O<ax<l (b) a>1 (¢) a<l (d) -1<a<l1 Ans:|a]
Discrete-time signal can be modified by modifying independent variable using
the following methods.

(a) Time shifting (b) Folding

(¢) Time-scaling (d) All the above Ans: [d]
A signal x(n) can be shifted right side by replacing n with

(a) n+k (b) n—k (¢ n+k (d nk Ans: [b]
A signal x(n) can be shifted left side by replacing n with

(a n+k (b) n—-k (¢ n+k (d nk Ans: [a]
A signal x(n) will be folded if n is replaced by

(a -—n (b) +n (¢ n+k (@ n-k Ans: [a]

Discrete-time signal can be modified by modifying dependant variable using the
following methods

(a)  Addition of sequences (b) Multiplication of sequences
(c)  Amplitude scaling of sequence (d) All the above Ans: [d]
Energy of a signal is
> 2 1 2 2
@ E= ) |x(n) (b) = N, Z |x(n)
(¢) E=Lim Z |x(n )| (d) - L i x(m)[* Ans: [a]
Now 2N +1 < 2N ., &=
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21. Average power of a signal is

1N 2 1 2
@ P, Lim_o T N|x(n)| (b) P, N, |x(n)|
2 1 N 2
c) P, |x(n)| d P, —  [|x(n)| 4ns:[a]
n N n N
22. Energy singal’s average power is
(a) Infinite (b) Zero
(©) Cannot be determined (d) None Ans: [b]
23. Power signal’s is energy is
(a) Infinite (b) Zero
(©) Cannot be determined (d) None Ans: [a]
24. A periodic signal satisfies the condition
(a) X(n) x(n N) (b) x(n) x(n N)
(©) x(n) x( n) (d) X(n) = —x(—n) Ans: [a]
25. A sinusoidal signal cos n will be periodic only if z is an/a
0
(a) Integer (b)  Irrational (c) Infinite (d) Zero
Ans: [a]
26. A real signal x(n) is called symmetric if
(a) x(n) x(n N) (b) x(n) x( n)
(©) x(n)  x( n) (d) x(n) #x(n+N) Ans: [b]
27. A real signal x(n) is called anti symmetric if
@  x(n) x(n N) ®  x(n) x( n)
(©) x(n) x( n) (d) x(n) # x(n+ N) Ans: [c]
28. A complex signal x(n) is called symmetric if
(a) X(n) x(n N) (®  x(m) x*( n)
(o) x(n) x( n) (d) x(n) =-x(-n) Ans: [b]
29. A complex signal x(n) is called odd signal if
(a) X(n)z—x *(—n) (b) x(n)z—x(—n)
(©) x(n)zx*(—n) (d) x(n)zx(—n) Ans: [a]
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30.

31.

32.

33.

34.

35.

36.

37.

38.

The other name of LTI system is

(a) LTV  (b) LSI (c)

Positive delay element is
@ Z° (b) z" (©)

Negative delay element is

(@ Z" (b) z' (©)

The other name of static system

(a) Causal (b)
(©) Time variant (d)
The other name of Dynamic system

(a) Causal (b)
(©) Time variant (d)

Linear system should satisfy

(a) Stability condition (b)
(©) Superposition principle (d)
Time invariant system should satisfy

(a) Stability condition (b)
(©) Superposition principle (d)
Causal system response depends upon

(a) Future input

(b) Present input, past input, future input
(o) Past input, future input

(d) Present input, past input

Pick a causal system
(a) y(n) = x(-n) (b)
©  y(n)=x(n) (@)

TV (d)

z (d)
1

7 (d)

Memory less
Stable

Memory less

System with memory

y(n—k)(—)x(n—k)

None

y(n-k) x(n-k)

None

None
Ans: [b]

None
Ans: [a]

None

Ans: [a]

Ans: [b]

Ans: [d]

Ans: [c]

Ans: [b]

Ans: [d]

Ans: [c]
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39.

40.

41.

42.

43.

44,

45.

Pick non causal system

(a) y(n) = x(-n) (b) y(n)=x(n)+x(n-1)
() y(n)=2x(n) (d) y(n)zx(n—l) Ans: [a]
Pick non causal system
(a) y(n) = x(n) (b) y(n)=x(n)+ x(n+1)
(c) y(n)=x(n)+x(n-1) (d) y(n)=x(n-2) Ans: [b]
A system is said to be unstable if it gives ..... output, for a finite input
(a) Finite (b) Zero (©) Infinite (d) One
Ans: [c]

Condition for a system to be stable is
(a) Impulse response should be absolutely summable

® 3 |h(n)=or
(c) Z |h(n)|<oo
(d) Z h(n)[=0 Ans: [a]

Represent the sequence x(n)={1, 2, 3, 4} as sum of impulses

(@)  8(n)+28(n-1)+38(n—2)+48(n-3)
(b) 8(n+1)+26(n)+38(n )+48(n—2)
() 8(n-1)+28(n)+38(n+1)+43(n+2)

(d) 8(n+1)+8(n)+8(n-1)+8(n-2) Ans: [b]

Response of an LTI systems is

(a) Multiplication of input and impulse response
(b) Subtraction of input and impulse response
(©) Addition of input and impulse response
(d) Convolution of input and impulse response
Ans: [d]
Discrete-time systems are described by
(a) Differential equations
(b) Difference equations
(©) Linear equations with variable coefficients

(d)  None Ans: [b]
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46. Continuous-time systems are described by

(a) Differential equations

(b) Difference equations

(©) Linear equations with variable coefficient

(d) None Ans: [a]
47. Solution of difference equations can be obtained by

(a) Laplace transform (b) Fourier transform

(©) Z-transform (d) None Ans: [c]
48. Solution of differential equations can be obtained by

(a) Laplace transform (b) Fourier transform

(©) Z-transform (d) None Ans: [a]
49. Relation between system function and impulse response is

(a) H (z) =h (n)

(b)  H(z)= D h(n)z™

(©) H (z) = Laplace Transform of h (n)

(d) None Ans: [b]

N-1
50. Finite Geometric series Za“ is
n=0
1-aN"! 1-aN
(a) (b)
l-a l-a
_ o N+l _
© =2 () ! < Ans: [b]
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Lot us d&hmg a  N-poimt vector x, njD Hhe 5}ﬂmai
Sequemce  x(m), am N-poimt vedor X Cr:b -qupemojr
samples amd a NxN mmatrix W, as

KH:

oY NH'-'-'

| ato) |

| ’I.'L’N-I]

N 0.0 0.1

Wi o Wy

.0 4.4
Wy Wy

| - *ﬂ“"‘)-l
W W

2w (1) X

PR M=) e
WM{H‘]-- | \,\g Y1)

4 A 1
1wy
VA

——

X (o)
=1 x0)

Xfm-a] |

o(n-1)
Wy

w:(u—l‘}

w(::' D(h-1)

|

=1

2 (M- 1Y




Fromm the abore d.-ﬁmitfnme, the N-poimt DFT

Cam be expressed Im amafrix ﬁn*rrm an

X = Wik

Whare Wy Is the matrix Dﬁ e Limean tyamghoramation,

We obseve that Wy 18 O Symmetric matrix. 9{
we o’sume {hat lmvense Oif: Wy exists dhem IDET

o be expwsred M oot x ﬁrmm o

0Y | Xy = — Wy N
N

whohe Wy desotes the  @mplex Gevjugati of Wy,

PROBLEMS
1) Compute the H- poimt  DFT ﬂ'é o soquemce
an) = Lirifa'uLlh‘

Soln! —  T- METHOD

e ————

I

From +the deJSm frb DFT Wkt
M-l m

Dﬁll*l(rrﬂ} = x(k) = = xm) Wy K=0,1.,N-|
m=C

ivem N=4, ,

Emny
fox() = = x(m)Wy

Mm=0



I

s

K &
xo) + X WS + TE) Wy x() Wy
s
X(E) = 1 #2wd +3wWy™ tawy |5 k=023

Twiddle Fadoys ;

For N=H,  First four {:m':ddlebadﬁrs..
21]
0 9
0o ‘V‘l'i.' :1 wa - "1.
: ' 1 i g, .
}EL -1 1 Wy = - Wy = J
POWERS q _,j' L/ m}emor‘rftrﬂtj ¢ use Wy :éJ:Hf;‘r and
1 solke.
et k=0, X(o)= 4+ 2 +3+Y4 = 10

e —

tet k=1, Xx@)

il

1 +EW;_|L {—SL-J: %HW;

1\

1+ 2(-1) + 201 + w(j)

= -2 fa]

let k=2, X(2) = 1 + 2W> + 2Wj + Hw,

L+ 2 (1) + 2 (1) 44(-1)

-2

——

i

1

5 - q
et k=3, X(2) = & +2wy + 3Wy + H Wy

—
—

L v o () 40D 4y (=)
= -2-2]

-'{}C(lc') = 5 _m ) —242) , -2, —9-1j}
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- METHOD ¢—

XH . waH Xn & Xy — Row vectors

:[iﬁztﬂ Lo

W W Wy

B adlt T

Wi W W

Lo wd ey

- Pgﬁﬁdjcih] pmpdw"j 01? Wy ¢ wﬂhﬁ-u o -

N
and. s‘_|rmrme+rj Pmpﬁdj 3 WHH% = - Wr-rf
XH:[LaﬁHj—iiii
R S
LR N S
B 1 j -1 "j_[

n‘{};{uﬂ - ll 0, -242) , -2, _EPQ'EE

Ahdditionald problenms  ow DFT &~
9)  aln) = [;ﬂl}itifgi Por Noh

st XGo) = [ 6, -242), -2, ~2-2]}
3)  afn) = lL 1,2, 2, 1} Ly N=b.

ANS: ()= b 6/ -1-], 0, ~14])



) x™) = S(m) + Sn-) - S(m-a) - S (m -3)
= 11,1, -1, 1)
ANS T X(p) = g 0, 2-2] , 0, 2+4aj)
5) Fnd the H-poimt Tppr o X(k) = 5 0, -2 +2],
-3 ,-2-2] },
Selni—  From the deﬁin% IDFT,
IDFT hx(0)} = x(n) = ”ig %__!G‘x(t) Wy

'ﬂ:DmL‘.,...IH-—'_L

For N=¥, . e
xm) = = X() Wy
Ll k=0
—a2m
An] = [ x) + x(1) wq + X(2) Wy
+x(2) wfm]
~am
a(n) = Jf{ [ 10 + (-2+2)) wfim + (-2) Wy
+ (-2- ﬂJ Hq_am] y M=004,2,3,
TWIDDLE FACTORS § For Hrf.h .
\ -,
! -l'lj ‘\ Nlr =1 L\lll = -1
- _ —3 o
2 . 0 Wy = Wy = -]
1-J




_ S vl -2
x(1) = _L[ o+ (—242]) Wy + (-2) Wy
H N -3
+ [*ihf?fj)wq ]
_ _L[ o + C242)(]) +E2)(-1)
N d
+ [-1‘1.3)(1)]

1 (2) = JL_[ [ 10 4 (-2+2]) wf + (-2) "Nq“L‘
FCama)) Wyt |
- _lT [ 10 + (-242§) (1) + (-2) (1)
FE2-2j) (-9) |

;bE[Tn‘j‘: | & 2, 3,41} l
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1 — METHCD § — l
' N —Em
WeT,  xm) = L < X(ic) Wy
N ¢-p
Abore equatien Catn also be writtem a,
XN =J_}(H W: Xiy ; Xy — Row
N vectors,
Givem N=H,
_ | ¥
'x'H - -E,- XLE fo
Xy :_j;[ 0 (~242j) -2 (_g___-:.-_j)l + 1 1 1
) N
1 -4 4 =}
BT B S
= LT ]'.‘,}-—:L{-fl:j-i—l—ﬂj i i H |
. 0 —2j-2 +242)-2 :_’j__; 3
|0 +1—-':_j -2 +2 4.-'.1:] H [
10 2] +2 + 2 -2 +2 |6

MOTE & ANSWER
00 “x{"rﬂ = {1 i, ?'i 2 *'I}J IS 1IN Row,

REPRESENTED ps

COLOUMN  ONLY Fop
(ONVENIENCE,




@ Fmd fhe DFT o alm) = 5Gr,

Solm i~ Fvom deym of  DFT,
M-
DET 5 TL[-'rﬂ] Xle) = £ xam) W
Mm=0D
N~
Hewee, DFT ) Stn)} = & ¢y Whad
M=D
W T, §(m) = H L, osm=0
D,.r 'F‘ﬂ"l" ‘-']"\‘..i:ﬂ
. DPTlZS(fn}} = $§(o) Wb? = 1,
N-PT
o | $(m) «2E> -

(® Fmd the PFT 0

Sol:—  Fromn  the de{]m ”f] DFT,
M-
DET !l'lf’ﬂ)} = X(e) = i a(m) wH
M=0
M-
Heerve, DFT ]l S{“ﬂ-—f‘ﬂa]} - _f_:_
m=0
"‘.PIKT; .S("'I"I"rﬂﬂ} = } 1’}!‘ al M=mMg
/

x(m) = S(n-mo).

fov m F Mo

oo DFT Il S(M‘ﬂhﬂ} = §(0) wﬂk‘m

%{m“*nﬂ-.).g___'f—l-} NH

Fmo

Em

E[rn -'"I"lcw.) WH



j_i_T_l’ Ko™

@ Fimd N-poimt DFT o a(m= e

Solen, — Fromn d@ﬁrﬂiHEﬂrh ﬁé DFT

.

™

N-|
DET 5 ’Iir’rﬂ} = X)) = = gqn) W
N=

Hence, DET [1 EJEHH_ ir_nrn} _ N~

i
=3 =
1 1
0
U
()
1
[ A—
z\5
™
ks
5
|
3

M

M uo ol
1 ‘[ EEEE&'&)] ., éaﬂ
- 7y
X (i) B | = g™
—joT (- ko) =
L - .J?;ﬁ.{t kKo =%
ot k=ke, X&) = % : uSirnﬁ L-Hospital’s Meflod
. (—-jin E"Jlﬂft-tﬂ‘})
— —J;f/_.f—f’ﬂ—/—_
i 12l c»:—r;a)
2 e Y
0 - [ N © B k=-ko
nE [:[Dj. 0
= j_ﬂT.E = N
T i
Jorr . e°
™

.« X} =4 oF Eeko

=

at k#kKo X(c) =0

X(c) = N s (k-ko)| b [X(k) =

N &F k=Ko
o Hr ¥tk




|8
@ Fimada +the DFT !Ib x1ln) = ETJ%—}FEU“".

?E"_;_”_t’ Fromn  the deb:‘ﬂﬁig DFT,

M-
- Em
DFT Hl[rﬂ’:} = X(c) = £ xm) Wt
m=0
. M- . .
- —)21 J2M e
Hewee, pET {E 120 k;ﬂrn} = £ o Ekem IR
Mm=0

(l

Nél

[ -J 2 UcH:g‘,i,T'
m=0

. M N
v [e”l?ﬁ(umq 5 ad

Il

m=0
M+
- |1 —a
-2 (e +ks) =
L - € "N — a
= 0
ok k= -Ko , X(k) =
Usion L- Hos?i{:ai‘s Rede ,
0 . (—'j?ﬂ_] E—llﬂ('ﬁ{‘tnj
X(k) = | |
\ =12 (k +ro)
— 121 o ]
o0 - [ JT‘I) W N K=—ko
at ¥=-ko , X(k) = J._..JTT_ = N
0
at K'Tli__th.. X(g) = © - o
P N o} k=
b"g}r X(e) = _H_S(lt-!’hg)l 0 Xflf_}‘-‘- 0

0 ot k
oy X(£) = N S(k-N +ko) tho




\9
Fimd the N-poimt DFT o 2 = CmE:lLturn

Selmi—  Fom debhn o, DFT,
)5 km
DET Ex{rn]} = X(k) = £ xlm) W,
N-0
M-I Ci
DFT | s o yﬁm)k = = () v,
=0
5 j ~32 gm |
- E*,Er%'tum + Ko —J20 e
rﬁ:ﬂ :1_
— ne Eﬂgﬂ
| NZU 320 (k~ ko) m . &'%e®
e i E N =
> | m=o

y S €
Tn=>0

=L hnstemw) N § (et

N Jigir_ﬂrﬂmk

—_—

ms(i’%tﬂm) s B | %Cwnﬂstrﬁrﬁﬁ

—

@ o ieemil |0 Pmunrmf 2(m) = =M EPTWh’ﬂ

Anse S (E&Vu"”) LN [Si.’t-- Vo) - S[t’:k’aﬂ

—_— :,:J'E
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@ Fimd {t\f? L. I'\r-,"im' rJrT ﬂ{] ':l'("l‘"l] = g .'[Ir '1, i} P

Solm » Froam  {he dg-{)h1 % DFT, w7,

M-I
m=0
k=01, . M-
Guivew N =5,
Y Em
X(k) = f“ x(m) NS ; E= 0,123 4
=0
X(g) = ale) + lfl‘l‘ﬂlgt + a(2) w;r_ + 2(2) w;'t
-
b ) W'

& 2
'\}f{]{.\] = 1 + \‘\IS' + wg K=0,1,2,%Y4
|
Tuiddle Foroy=: Nz S
\,AJ';:I = 4

~J2] o f2m) ) -:m('ﬂﬂ)
Ve = @ ¥ ¢ cos (] )—-J'

7
¥

C' -J-.“:‘I-U *] ﬂ_IIr‘

MI;LI . . - i'J'H_.'J (0" ( |'||) | *:i_“( l[l'l)
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~) 204 EE) — | sim STF)
We = g ¢ = ( <) ¥ A
= 0309 + ] 0.95
Evalwodtr  X(K],
at k=0, xfo) = 12 +42 +1 = 3
ot k=1, x(1) = 1 4 w; 4 {.-ng - 0.5~ )Is»gg
ot k=2, X(2) = 1 + We + W' = 05 + jo.2632
3 6 .
of k=3, X(3) = 1 T Ws + Wg = 05 —]0.2632
Y -l .
ot £=t, X)) = 14+ Wg +wWg = 05+ 15388

KG:) = E 3, 05 rj .s288 , 0.5 +j 0.2633,

0.5-]0.2633, 0.5 + JI.5288 }

@ Fimdk IDFT bDT e bolluw‘lnﬁﬂ sequemce
(k) = { s, 0,G-j),0, 1,0, 0+j),o}

Solmn:— Lemra%x Er{) Hne Sequemce s 8,

;n N = %
Frorm {‘[nr_} ':"ﬂ 0 JUF—IJF
i e
TDFT 1) x(t]} = x(m) = :Ef_ﬁm X(ik) Wy

Where M= 0,1,2,...., N~
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S"ﬂ

po b (4D ug ¥ ]

wheke M= Dy 12y

ov | Alw) = _1— [ 5+ 0-Dwg™ 4 Wg ™+ (14)) NE_EjJ
TWIDDLE EACTORS & N=8
o -2 —14
) I Vs g
—ﬂ~?U:’rJ“'%:|' oFot tjotet o Ly
”, {2 @G
0
1 Wg
T | N
%
Wg Wz
) n,ng_j[}.iﬂl?
, -6
A:g 5 W
~ 0.0 —jo-70% -J




For =0,

For m= 1,

Fov m=2,

213

{SL]—j+1+1+j}=

T

oo op oo |—
W
.‘.1.

x(4) = £ b s +(-DWg 4 W
b () wet f
[1 s +G-DJ + 0+ (+]) 5

JE.F
SIRL At

il

2(2) = —é— Jl s +0-)) Ngﬂq + HE‘E
b+ Wg™ |
[) s +(1-DE) + 1+ ﬂ+j)£—n}

i

\l

115—|+j+h~|ﬁj}



2

12) = —%— % < _j+jl_a_+j+j1,}

:“é s -j-1 - +j-|}=_-§_-_i?

for m=y,  xly) = -é- [1 S+ (-] wg ¥ + wg 'y
(1+3) g™}
= _IS_ Jj S+ (1=]) 41 +O+j)}

:Tg_:’l
8

o — |0 -0
hrm=g, =) = 1L (L s ¥(1-J)Wg + W

F0+d) W™
|5 0D +C)+ ftﬁ‘j)[—j)]g
)

s+3-F-1-] —-:IlE

=6 ale) = Ll s bG-]) wg™ W™

W

4 l[ s +(-1)) +) *C\ﬂJC—!)}

- nJl'll“‘l"n—':__Lj_:l.
_%[151+J J}E"_E':

il
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— _ L
Pmrrnfih 1[4]-%%*5 J”G“JJWB + Wg
v (1+]) LUE_H:L}’

=L | s v0DE) FE) W)
= J%- [LS “JHI-1 4] +jl}
= 2 _L_
R
| x(m) = llif%a-%r—#rif%:‘]iqu}

@ Fimd DFT (JB Hhe Seqemce. afm) =

L, oemen

%, n=g. Plot |X(v)| £ £ X(x).

Solmi—  From e tiib*n 01'5 DFT,

e

N-1 kN
per b atnm)} = X(e) = = xn) W,
m=0
%:"'I" H‘:‘Er "
2 il
X(k)= = xXMlWg  pored

=0

Gruem x(m) = ) 21,1
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o X&) =

2r
1+ w{“ + Wg +0+ 0+0+4+0+D

C L2
X(p) = 1+ Wg +Weg |, kK=012,..,%

Twddle Fadove ¥ N=8

NBD =1 L“JEH = -1

Wt = 0.70% - jo.F0% We = —0:701 +jo. 703
Wgﬂr — -—~j W‘EE = j

Wg = —030%-joot

Wet = 0.70F + j 0.F0F
[Lnr_‘oﬂ-@, Pﬁ?!'ﬂi's tn e wumit oivcle o EE‘MP!IE}::P{MQ
divecHen is Clocktise fov DFT)

v k=0, X0 =1 +1 +1 =3
8 1.
Pov =1, Xx() = '+ Wg + W
= 1 4+ (0.40% —jo0F) + (-J)
= l":lﬁ? "'j Ilq'ﬂ-'l'_r
Lf
by p=2, x0) = &+ We™ + W

= 1 + ("j_) -1-—[*1) = —j
Por =3, x(2) 1+ NIEE' + NEE

\

\l

t + (-oF0t—jo.q0%) + |
0.293 + J0.203

i

(\
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tor k=4, X(4)

il

L+ W'+ Wy
L+ +1 = 4

for k=5, X(s) = L + Wg + g

il

= 4 } [—ﬂ-'JrU'-f--I- J.Dr:f"D:ﬂ Jr(—j)
= 0.293 - j0.293

—

by =6, X(6) = L+ WS+ W
=L+ +() =]

_

bov k=4, x(E) = L+ wg +Wa'q

= 1 } 0301 + j0.30F + ]
1.340% +] 1.40%

[

SoX(e) = LL 3, (L3t =J1%4), =T,

b.osa + J0.293), &, (0.293 -] 02a8) ],

(j_,:{u::“-k + ] 'L-Tl*ﬂ"r) ]"

For mgﬁm‘l%ﬂm Plot,

Kl = | 2 s, 4 o1, w1,
2.414
Phove Plot

o, -m -T r e, 7T
,1;{&3:& o = g ’H’E'?J’
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rd 4

Ttnq

A
1
1 2 2 {4 5 6§ F

-

6.414

0.4
i

e

0

7




PROPERTIES OF DFT 3

1) LINEARITY ¢—

STATEMEMNT @
ﬂb A () <2 X4 (1)

A (o) ﬁ——?—EI'E" X j__{-.'l'-'—.)

Hem A Ty(m) + b Xa(m) La Xale) + bXalied)

-

Prooks
a2 W.e T, x(m: = 1[m]HHLm
m=0

Let xlm) = X4(M),
: M-
= oy w,ﬁm __r#@

Hrom }(1&3} -
=0

Lot 2clm) = %),

M-l e
Hen Xale) = z Xaln) Wy —9
m=0

Lot x(m) = ax(n + b X, (M), them

NI ke
Dpﬂrl[ a () +b'11(m1} = < [ﬂm{rrﬂ FbTalm) | Wy |
Mm=0

M- ™
M e
- a £ % b.l,qt rb < AWy
m=0 m=0

= aXy(e) v b Xy (i)

Hemce the ?rcffhn -
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2) PERIODICITY

STATEMENT 1[] ol F 1
) «—— X(k)

Jhem  x(m+N) = x(n)
X (k+N) = X(K)

oy X
(m + N) <275 X(k)

Prook &
Proofs a) TPT ox(man) = xln)

Wi T  xm) = | 3
"y % X (t) WM#UH
=D
replace N bj TN
!
almin) = 4 Z X( sl
N =, ) Wy
— H-1
=1 2 X o v
=0 .
m t-T wﬂ-tH: ’i-
e+ N) = 3
- 1L = x(e) W
N k‘r:D "




b)) TPAT  X(e+n) = X(&)

M-
WET  X(k) = £ xl) Wy
m=0
'rePluce ke bj 'r_+NJ,
M-I

X(E+N) = = o(m) W(tﬂq)rn

oo }(Ct-H-ﬂ = K[VJ

Hemce prnued.
() T-P.T  xfmin) <5 X(e)
WET, DFTII';LLM‘J} = X)) = g\ () w:m
=0
Lot a(m) = X(m+N), them

(e

DF1 ll 1[m+1~ﬂ} = é Ll m+ N) w:m
M=0
P{__l{j \j‘:'“l"l‘i'N = M= JI.“N

Jdimits § m=p r 0 =N

m=N-1, Jd=N-L+EN = 2N-1
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a2N-4 \f.‘:uﬂ
= 2 ) Y
Jd=N
a2N-1
= Z W) whw
Jd= N
| -
Since Wy =1 4 Jimits N tp aN-1 con
be rep!med bj 0 fo N-1 us?nnca Permdj‘cﬂ-y.
DFT ( -
(m+N)} = 4
% i )} = é x(d) w:—
Jd=0
DFT\L:t[er)} = X()

Hemce pmued.



o

@ C TRCULAR TIME-SHIFT

Civculoh fime Shi-b{' E:PehaHE*u O N+|mifhf:

sequemce (m) s givem by X ((m-mn)) o4y
1[(m-=fm')-)ﬂ oY 'Jc("ﬁ—"m,“mﬂd N}-

pET

STATEMENT 3 b (M s x (1)

them 'I“T\-*"TT"!I]T]H DH X[K) E’ N

o x([m-m)), <2 X(E) P
HlJ‘“.l x ([ n+m )y <075 X(K) EJl“trm
~km

ov o ((mrm)y €25 X(E) Wy

] H"l
PTW'E"@ W.KT K[t‘) =~ é_ o (o wﬂtm

m=0

ot x(m) = x((m-my
N~

Hem  DET l] 1{{fn—rmﬁﬂk = Z xllm-my-W
=0

Lotk m-—m=Jd = m=Jd+m , Jimitss
at mzo r tﬂ:-—"l"l'"l

M = N-| ‘_‘[:H-—i._m
N-I-m

DFTl[*If[rn-—*TﬂﬂHR e "f: K{Lﬂ ,Ilr:-fi’-lf"m]
d =-m
L k4 ko
= = x(d) Wy Wn o s
=0 Feriucﬂdi'j

E h xlln- ""’"m"ﬂ = X[L}NH J
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E xample @ d{} I{fn‘\:{ 1, 2, ng} &Frnd 3{“]‘;
qivem  y(m) = ’I((rn—s‘,x)H.

%?l"l“ﬁ Grivem \Lj[rn'} = x({'n—sﬂ;_l

at m=0,  ylo) = x((-3)y = AX(4-3)

= ‘I[i] = "B

e —
—

at m=1, Y1) = x((1-20y = =2y
= x(y-2) = 20) =3

at m=2, 4B = x((2-3Dy = X ((-1)y
= a(4-1) = «x(3) = 4

—
i

at m=3, y(3) = x((3-30y = axlo)
=1

Yy = Laysyn, )

L

@ "j{) Lm) = lL 1,1,1,1‘1 ftmd the DFT c%
ylm) = x((n-2)y-

Solm:—  First ﬁl‘nti X(e),

Xy = Xy Wiy



xmz[Laiq 5;131.13
4 1 1 -1
O R

o X(¥) = [5 -] 0 AT
(riven Strﬂ]: x ((n-2)y

Joking DFT amd applyimg circuloh time -ghift

Pmpeﬁrhj, "™
\{("C.\] = X(:t] wl-[ / K=0,1,2,32

ot =0, (o) = }{fD) [,-J,_? = (E,‘J{l] = £
ot e, ) = XO) WE = (1)) ) = 1]

at k=2, V() = X(2) Wy = 0
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H) TIME REVERSAL

STATEMENT ¢ a4 1[f*n‘\-=£g% X (k)

them. g ((-n)) = x(N-n) <ELs

X((-Y), = X(N-K)

E"L’Df:’ Froom ch‘bm% DFT, we hawe

s i
DFT LI{'_'T*‘J} = XCt’_) = é alm) WHM
M=0
-~
HE"ﬂ'E'E; DET Jl ']{_.CH"'TE']} — é ICM'_'TI] WH
M=0

FLLt = N-7 :> m = N"‘T‘f"i
Jdimi€s : at m=p , M=N

m=N-| W:H—Cﬂ-l} = 1
A (M=)
© DFT le[rq—ﬂrﬂ} = 2 xlm) Wy
m= N
EN =k '
= é 1) Wy . Wy e
=D periodici
It"'mp .
Moo, Wy =14 o
N-| (—)m
DFT (-} = = xlm) Wy
an= 0O
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Examnple

2lm) = {51 * r'%#j . FHand
‘j{"’ﬂ‘] = 'I{C”mTJ.'_I
Solm

(omsiden H[’”\] = I[{—Tﬂ],_[

oy (:]['T"I] = 'I_I[Ll'—q"']‘]
at M=o, cjin) = wly) =

m= 4,

x(0) =5
g(a) = x(y-1) = x2) = %
m= 92,

yle) = x(y-2) = xls) = -3

n=2, rj[*}) = ax(y-2) =x0) =2

o Yln) = ll5:'jr|"3“*r1}

Giveen  xlm) = lli.i,?:.ﬂ} whh 4= poimb

DET X(k) = {m, -242]; -2, -2-2j]. Fimd
Hhe #H-pomt  DET ojD the sequemce
ym) = | 1) my0 2.
Solm : - Obsew?mfa afm) & y(n) we bl‘rnd {hat
IJ[FT*J = o {[*‘T‘mq

fjnk‘{mfa pi1 ow  both sidu amd GPPL:ijﬁ
Hiane reveraal FrnerLj

J(k) = X((-¥), = X (4-k)
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ot k=0, Mlo) = xlo) = 10
k=1, Q) = x(4-1) = X(3) = —2-2]
=2 12) = x(y-2) = X(2) = —o
k=%, Y(3) = x(y-2) = X(1) = -2 +2]

:D ‘4['@] — H |0 I ‘1".1‘]! —1; —-Q_ﬁ'ﬂ-jk

5) CIRCULAR FREQUENCY SHIFT

STATEMENT jb x(m) <255 X(k)
th (o) @R ™M L DET
em  oAlm) em™ -ﬂ—-—g—ﬁ X (( e =m)),
— T

o x(m) Wy D X (( k=m))

-y _jam
| xmye N DT X((k+m])y

mmn
or () Wy s x f( ktm))y

Proot i— .x(r_) 55_ () Wy

} 2Tyay  J2Tem

é_ a(m)e N e
=D
_ %—_I ) E—Pﬂ{r_ m)m

=0

= X ((e-m)),

femce the proot.
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Fiena N-PO;-W'I]L” DET % 'Iﬂ_f"‘l"l] = (b5 (i_NTLtﬁm) fr,{rn)_

Solm! —

Givem  Xy(m) = Cos EPTTF tnrﬂ) x(m)
—t ji‘ltrﬂ '_*}‘lﬂll'.oﬂ"l
[E’ | o + e N 1{"“)
2

9 x(m 25 X(k)
Ua‘mj civcudon brecLuEfﬂcj shi/f property,
oV ZIKM grfm) «—2T—> X (( k-ko)y

E—J?ﬁﬁmﬂ % () 5 A |C+l’-anH

Hemce  DET &“i['mk X4 ()

—

){i[rj {j X ((e— lr:n‘)),q

amad

Fimd N- pn‘lrﬂ[' DFT Dﬁ Lalm) = sim (&Etbm) T(m)
‘ 1
ANS T X, () = E\T{ X (£ o), em[(umﬂ

A=, almn) (oo C_ﬂ"ﬁ Jﬁ 2 l L X ((xc- iﬁﬂr‘_ X(( rjl‘ﬂﬁl

™

«(m) =i [egiffﬂ\ *’” {X([L Hﬂ :"Kf{rlcﬂ‘]ﬂ
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6) cIrcu
LAR
CONVOLUTION | TIME - DomAIN CoNVOLUTION

OR FRERUENCY DOMAIN MOLTIPLICATION

STATEMEMNT 3

ﬂqg 2l <P s X(k)

L him) <25 #(e)
dhen y(m) = x(m) { hin) %5 X(c) HiK) = V()
Proot &

Covsiden  two sequemces  x(n) 4 himn) o% dgwﬁnﬂ
N, them civculah Comuolutiom is dﬁéﬁ"ﬂ&d a/
f

N-|
y(m) = x(0) (@ hiv) = 2 ofn) h{(m -m))
™m=0 "
DFET {lj{"fﬂy = V) = g y(n) wpﬂ
=0 A
M-l N
= <2 Z xlm) hiln-min. wm
Mm=0 =0 h

Um%mcham%imj ordes tﬂD summatioms

M-l (N Bl
= < wm) £ hi(m-m) th
™Mm=0 N=0 s &
M- Usi . R
_ cave kst Timne-ghilt
2 xtm) wETH | ooty
-t h([ﬂ"w‘nwﬁﬂ?
= X() h(K) W HCe)

Hemee the prood .



4
L METHOD Circulon comuolutiom usimﬁ DET 4 IDET
( stocthains Method )

% ()

o (n)
—— DFT

Y(e) = x(k). Kl

IDET

ki

o

h(m)
e H(x)

TJhe method Tmunlues chkl'n"-% Hhe N poimt DETe
U'JD awln) 2 him) bota GB JE’M@'H#. N Pn'lfn’rs_

The respedﬂr-t DFTs are multplied elememt wise.

Them -En‘clma IDFT njD the sequemce V() +o
obtaim ﬂ[ﬂﬂ.

@ Compute dhre Civcwlan  Comyolutitn o-%’ Sequemces
g(m) = 11 1'1;5|L|k amd h(m) = 31,1,1}‘
Soln ;- Given x(m) = l] 4, 24 3, th
£ hiw)y =} 102 D’}

Lem%% U‘jD I["ﬁ\ilf Hﬁ = H : LE""I"‘KZ':]#L'L O‘EJ h{ﬂ"i‘]f N-_.__ =3

Ihe Comyolution an;j}t« N = max ( NNy
= ax( 4 3)
‘ N - [




Y2

oimee  him) is ﬂ% Je’nfjﬁ't 31 pad ewme zerp

fohtm)= [ 1,2, 2, 0]}

I- METHOD : Jicene - Doanoin Approach or

Comcemtbric eivcle Metod

From  {he d.u{)mm{ circukod  Comuo(ution,
M-l
yln) = 2(m @ him) = = x(m) h[{m_qﬂnu

™m=z=0

whae m=0 to N-1,

ivem l‘*«l.:"[F s
Loy = Z ale) h((n-ml)y o n=oi
m=0

= o) W™y + %) h{{m-1),
t () hiltn-20y + x(3) hilm-2)),

at m=0, tj[ﬁ} = %Alo) hile) + x() W=y + x(2) h((-2))y
+ x(2) hi(-2)),

ﬂlu*) = alo)hlo) + Q) h(2)

+ oq@Yh(e) + xl2) h(l)

(W) + @) + ®)B) 21
+ (4) (2)
A + 0 + & + B

W

i

Lj[ﬁ} — 15 D

e
e



4%

ak m=1, tj[l\ = x(o) H(rJ}LI F 201) hio) + x(2) h(s)

92
Foocl2) hi2) = h l—am)
LI
5[11:1+:+ﬁ+9 .
0]
9y =12 ? ) 1
g £ Z
at m=2, yla)= %x0©) h@E) + x0) W) + Z(2) hio)
0
+ 'ILE-] h[:’) -'L_'“— h(l-—‘f‘ﬂ}
5{3-}=1+'-|+3+ﬂ | oL (]
ye) = 9 Sk * e %
— - 4
“‘-—-._1__;
at m=3, y@) = ) h(2) + 10) hiz2) + %) h(1)
A
+ x(») hio) el ES
a
\Lj(-a‘,-: 0 + 4+ &6 44 2 lm)
2 Y J 1 0

veridicationm 3 =y aty > o 33 \ 5
oAy el ||
/ | i I
3 : 2| Loyl e q
| |
H-' 34 g-= 4/ O Iy
- L _ o




HYy
DFT & IDFT equatiens or

T — METHOD 3 Us,‘m%
Tramsforem  Domoaim Approack. o Stockhom’s amefoq
Ym) = o] (N) i)
Applyimg DFT,
V() = X(). H(k)
(1) Jo bffﬂd X(k). Xy = X Wy

= = -t

X()= [+ 2 > u)[s t + 1!
1 =) 1)
1 -1 1 =
1 3 ~j_

(1) To fmd HCe) Hy = bWy
HEL!:[lzltﬂ_iii L |
Lt =§ -t ]
1 -4 1 -4
i -
B 4
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Uﬁ) Fimd the product ﬂ% the soquemce X(k) & H(c),

V(ig) = X(k). H k)

‘»f(\c.‘): { 50, 5+2\jf -2, 5‘%}}

Gu) To b»t"ﬂﬁd ﬁ("n]

o e . ¥
yln) = TOFT hyCe)y = Loy W
y () = B [ 50 6t2] -2 E"lﬂ R
Y 1]
1 —1
1 -]




H6

+)  MOLTIPLICATION OF Tio SEQUENCE S

OR  MODULATION PROPERTY oR CONVOLUTION
IN FREQUENCY DOMAIN

STATEMENT : jb 1, (m) <2 X, (k)
L i <DL X, (k)
DT
d’lﬂ.E"ﬂ "Jﬁlif'ﬁ‘] '11("”] I -‘i\—! [){'1[‘1—)@ letﬂ

Prooki—  Comsiden two Sequemeesr o (m) 4 %,(m)

ng Jemgtta N, woitn  DFT X,06) & X, ().

M
= = —In
TOFT | X9} = Tl = 2 (e)
M-I )
wr llxl{}”ﬂl = % = L £y, 0m) ‘Nnrm'ﬂ
N "M=0
Lek lj[ffﬂ = %, (M), 23 (n)
J:L@“: N em
OFT Ly} = NG = = ylm) Wy

m=0
S ke
— i % () :tjf:fﬂ\l Wy

m="0




1
=

z|—
N\ =z

>

oA

&

.

= |
=,
by,
".""-——-"-——__.‘
z |-
2\\ z

>

F:‘_"\

3

=

=z
W

mn=0 d=0 0
.
X Wy
N- - | e
(k-Jd-
S Z X (), £ X (m £ Wy, m)n
M* {=0 =0 M= 0D
o m= b-Ld—pn = ((e—0)),
ow A= £-m-PN = ((k-m)),
N S B AT
%kem, w:l:‘. A rm]m: N=I - J‘;T..I' PN
m=0 o
M-
= é 1 = N
m=0
N1
w0 = L2 X K (et N

d=0

1

M) : L[;(\c—ﬁ o) xgm]
N
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3) SYMMETRY PROPERTY OF A compLey VALUED

SEQUENCE
STRTEMENT ; j{) m) 2T X(k)
Hhem

x¥(m) <> XT(N-k) = X*¥((-K)),

ov x¥((-n)), = t¥(N-m) <2, X*(k)
Proot:  From dufym o DFT, we kmow Hat
M
OFT ) x(m) = X(&) = = alm) m:m
M=o
‘ja‘ctrnrﬂ cemplex mmjuiaail o befla sides,
N
—kEm
}{*Cr_} = <  x*(m) Wy
Mn=0
veplace k by N-Lk,
N- |
- (N-K)
X*¥(N-g) = < x* () Wi L
n=0
M- 1 —H Em
= £ xdm) Wy Wy
m=0
M-I = N
= 2 o ¥ () Lﬂ:m v Wy
=0 = 1

oY E”E:ﬁ_ e—‘g:i—,?" }{*[rq-—iil
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q) SYMMETRN  PROPERTY OF REAL-VALUED
SEQUENCE n

ATATEMENT 2 j{) wln) < X(r)
amd a(m) is veak, them

X(x) = X¥(N-K)

. |
ETEE: - W KT, X(i) = %' o (mn) m:ﬂ
M=0

ﬂatirwa cormplex Eﬂmjufﬁoit en both ides,
M-

()= = X)Wy

Mm=0

gimce  xm) is YEDJ, 1*(:%1 = alm)

N~ -Em

x*¥(<) = £ ) W
m=0
M- —km NM ce . MM

- é__ 1[‘1—\\ L‘\:'H . WH o [/'\J'N

mM=0 —
M- (N-K)m
M=D

e = X(N-E)
oY X(e) = X‘[N' )
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@ Jhe bh’SE bfw! Poimi‘s % the 8- poimt DFT
51) o rveal- valued Seguemce QL
{ 0.25 , (n.mga_io.mm}j 0, (0.125-j0.0518), g}
De'rE'fﬂ'ﬂT‘“a the re"mm'm'm«a 2 Puim’rs.
Solm 't — Grivemn,
x(o) = 0.25 X (3) = 0.125 — ] 0-518
x(1) = 0.125 - j0.3018 x(y)
X(2) = O

O

aince alm) is veal valued
x*() = X (N-K)
ov X(e) = x¥(N-K)

Heve , N=%8,
dren , dov k=5, X(B) = x*¥(g-s) = x¥@)
= (0.1>s —jo.osig)*
X(s)= 0.125 +JO.OSIE

Py k=6, w(e) = }Q""(‘&rﬂ‘] - X¥(=2)
- 0

Por k=1, X x%(a-T) NNt
; (n.w'. - \]ﬂ*:’.nlw]""

- 0,125 +\j 0. 2019
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10) CTIRCULAR CORRELATION

For Cerrﬂplex Uﬂ.[.uﬁd SQ%EMC&? 1(m) amd. ij{'rn)

g xm) < x (k)
y(n) <2 Y ()

Hnem r%(il-a—[—}ﬂ% Rey(L) = x(i).¥(k)

whow T;j[_ﬂ < fhe Civcwlod Cross- correlotiom

We cCam express Yoy (L) as the circulon

ot
cora tl"' (—mn).

comuolukien 01) x(on)
le, “a'%[ﬂ‘l = x(2) 3’%—1)

{;qﬁmcj DET em beth sdes,

DFT \1 T-%{M} = DF ll L) (N) j*[ﬂﬂﬁ
e TE usima  civewlah
Lﬁi‘-’_qﬂ : X(\'-N]_."‘ﬁ(kl)} t.‘mmnlu?imm A

Eﬂmtlﬂm fw-[juﬁnn

g, ) = ), rerety

Y (L) > RyylK) = \xm\"



11) PARSEVAL'S THEOREM >

For tomplex valued Sequenct x(m) & y(m)

ﬂ{) o () <215 % (i)

4n) < DFTs Y(k)
N M-
them Z_ 'J:[rrﬂ.rj"'('iﬂ = =z x(). 9%k
mn=0 N k-0
Pro}?%-*— Clrewdod  Crosg covre|oden 0;6 +wo SE‘{'}AEW’\LEJ*
s deB’med o
w&jm = = alm) Y llm -y
MN=0
at J=0 2 N-1
/ th('ﬂ = < o (j”r@ﬂ) —@
m=0
W.kT,  TDF1 ERHM} = *{%[J‘J
~ L N 12Ty
or Yyl = ¢ 2 Rey(6) € ™
£=0 Proem LiE‘Bm FL
TOFT
| N~ 120
"N = () ¥(k) et n el
k=0 Froan  elrculeh
ok 120, Covrelatipn
- | 'mew“_‘[

nij(uy = JN- £ X W) —(®
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Equoding RS 0} Equis (@) &@f

N-I M-
i 1(“:’1'} {j*["ﬁ = ._l__. }((K_ '._f (K—
m=0 N k=0
(_Ib I_Lm‘] = ﬂ[:"'ﬁ‘] / Hem
2 \1 [ M- .
x| = — X(x)
\ - 2 X

m=0
ki 1S Hae emevaij il e bff‘n'itﬁ durotien

sequemce x(m) im terms ajD the {]reﬁ,memcﬂ

Comn pnmemﬁ’- Xx(x).

@ Deteyenime  N- p-::‘urn';: civenlon  Covrelatien ojl)

_ oes 2T L yln) = sim 2Mm.
12m) = ® 'H'm N ) g
okm:—  Givew xlm) = eod 2TIm
— N

ﬂﬁb.mra N- poimt DFT,

X () = 2 [Sf'c—'.’} iSCt-H‘,j
brivem ‘j{’“\‘ —  sim :11‘51_

n-poiml DET, () - l:{} \ SCe-1) - Sfﬂﬂ



b
Fron  Civewlan  Covvelation Prnp@mj,

Rxy (&) = X(&). ¥¥Ce)

¥
Rxq(c) = N Lgit—t‘) ¥ S[LHﬂ [*E]- L sCe-) "g(“‘ﬂ)
2

g N[ §Ce- I}-Efr.ﬂ-\}

N[ gCe-) + e e+ |
2_

_ X{S(L 1] + SCet)SCE- () = §le-1) 80+
= Li:]

__[ SCLHE] }

sCe) Ste-1) = 0y [Sft'lﬂl = §(0c—1)

WET,
ama [S(LH}TL: S+,
= N s (1) *‘S[Urlﬂ
4] ;
PN VR - S b smﬂ\
RH(Q = = | 2) ,
u’rohm% IDFT

_ M sim 2Um
i

mj( ﬂ




hS

@ Fimd the civcalah autocorveloation be x(m) = Co 2Ly
N

Solm: — Givem x(m) = COS (%F.ﬂ)

:In.l‘:,fmfia DFT.'
X(c) = _;‘— [ sCe-0+ sCet) |

WET  Req (8) = X(). ¥¥ (k)

simee. (M) = Sinn] )

Roe () = X(e). X*(k)
%Lgit—ﬂ

¥*
= S(tﬂﬂk

= NN [ ¢ G-1) + SCew)

Ryx () = l[lﬂ_[ SCe-1) + MLHH}&
%

2 2
Ecxb‘m% TDFT,
_ N og[20
Gl = 5 =)
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@ Fimd  civcwlon  autocovrelotion o) the Sequenc

xln) = [ 4022 *1}-

%::Eﬁ_:-* Givenn () = li' 2, 8, q} , N=y

Fimd #he &-poimt DFT,
we qet X(c) = I1 0 ) —242] , —2, _1_1”
A udo corvelatiem o{) the sequemce alm) is
(D) &5 R () = X0c), X*(x]
= \X(lﬂ)\L
R}L:[ﬁ\] = \K[D‘J\l _ |ov = |00
Rep (0 = | X" = \[—1 %—1]’}\1'
= \m e
o) = |x@) = |2 =
() = \(x@\ = V22|

:ﬁ R'}t:(tf\l —_ 11 1.DD; 'E.[ ‘1lj gk




5+
To bf""td T’.L;(-ﬂ]i

‘fﬁ_@‘lri—{ma‘aHﬂfi (O R
! T S N
Lo 1 -
A
- L [120 96 28 %1
LJ..

rind Hee Civoulah Covvelation %Tu@m
1(mn) = [l 1, 2, ?J,H} amd j(ﬂn): { 1,2, 2, r:a}

Qolm'—  EFmd X(r)

—

X(e) = { o, -2+42j, -2, _3'11.]];

Frend Y0k
Vi) = {5, "*‘?j; l .—Hn\]k

= ¥ = %5; —2) 4 "'13}



9}
Civculah  Oorveloten prop mlm

ﬂ:@(ﬁ) = X(k). Y*(c)
- { 50, fl—ej, -2, '”EJJ'

‘Ja‘dmca IDFT,

Trig[nﬂ‘l = { I, 16, I3, mja ]

@ Ghvewn () = {I L%y 3y ‘1]1 blmd e emerqy
amad hemce Ueivubj Porsevals theorem.

—

Solm i~ Givem  x(m) = 5 1, 2, 8, J-r]

Emexay of, te 5ijmal x(mn) is a}uem gj
¥ 00

E= £ \I[fn)\%

m= —®

>
= 2
M=

it

\:t(rnﬂl = H{{d}\l Jr\rrm\ﬂ 11-{4:_1\’
’ 1 lt{['ﬂ‘!v”

1

1212 v+ v H

\_ £ = J0 \
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Fnd DFT OJD x(m),

X(e) = {'ﬂt -2+, -2, “_1'2j}

From  Parsevals S[hemew;
] M-

2 e = - 2 [xf”

=0 k=0

= -L* Z\XELW

k=0

i

-lq & X()|" + |xQ|™ + lx(:.)\LJr[x(g]ﬂ
- %1— (100 4 8 + 4 o+ g |
g = 2 = 20

hemce Parseual® Theoverm  is vekilied.
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Defimition of Evem amd 0dd Symanetry amg
v i J

tirme veversal,

An N-poimf Sequemce is said do be circulaily
)
peimt zerg

wem Tf Tt B Symmetric atoud fhe
e He circle.

ie, |%X(N-m) = o(m)

y L=< N-1L

Aeny H-Pu"trn\’ Sequemce js  said do Le Cil"udnlb,
ndd (£ & IS ﬂmﬂﬂjnﬂﬂh&fﬁﬂ, ooul the poimt  zorg

e Hhe civcle.
ie, |a(N-m) = - a(m)

fleme N—1

/

dhe Hme veversal 070 am  N-poimt  sequemce s

abtomed lﬂj mumimc:a ite SQMPIES obout H.e
Pmtmf sor0 ewn the civcle.  Jhus H.e Sequemee X ((~)),

is qivem L:»j -
1((-ny = Z(N-m)  pemey_,

For perfodic sequemce ':l:\gfrr'fjrr de.Ern ﬂ:L euvem ouad edd
sequemcees <

evem i .‘Il;[rn) = -:tP[-rn] = IP[N_,T{)

odd 1. | %p (m) = - Xp(=m) = - % (N-m)

9 xplm) is Lﬂfiﬂ"?lﬂ?‘- valued; then

Eﬂ{ﬂdhu_in]oll. ey H'I_F?'"ﬂ:i = IF*CH-—'T‘I)
mﬂnjuzaail odd : K‘pfm} = '—IP'*CM -m)




6l

Sequemce 'X.Pim’i cam be dgcgwlgﬂsed ae

Ap(m) = Tﬂi:-e':m] JrSLFDfmJ

Lyheye

"IPEC"I’\\] = _EI_— [ ‘Iljfﬁ"i] {+ ‘IP*CN'-’HE\

xPD{m) = ii_ [ Eir_P(ﬂ) - UCP*(N—M}]

Symmmetyy properties of the DFT
J N i v

Let us assume fhat x(m) amd s DFT  X(k)
are both qu)iex alued .

Jhem, ) = xp(m) +J (], m=o0,1,. N~

—@®
X[’C—] = KRC[} -F*,j X.[ft), k=0,1,... N—|
L—@
Froen the olefm 0% DFT
N Em
m=0
suwmtu{:rmaa equ (@) im equd,
M- e
X(t’.\) - é [ ttR["ﬁﬁ + jIIf’“E‘ © N
N=0

amd Since, €'°= (@0 +]sin®



HR
M-

XGQ é [IF_[f'n‘l + I[fm]] [ Cos 1“_ Em -—J sim ﬂrtp,-]
e
H_
- %D [ Yp(m) CoS (E_LI m) ~ J 2p(m) ﬁf’”(l_rzim)

+] %) s (2| + 2%(m) sim/2m
: (N ) ¥ % m(_ul m)]
=0
. f
Cm«npuﬂf‘nﬁ egms @ I N @f

-
Xele) = Lolon) 02T ¢m| + Xy(m) si D—TI‘1
‘ %o h (H . ) : m(—r«?m)
—@
M-
X&) = £ | —2pm 5tm(5§m) # %g(m) Cos(2T m—,)]
m=0
e
- M- -
H]J}jx WIET Al = ___ir\_l_ 2 X(k‘_] W n
r=i
ﬂubﬁt’i{:t.ﬁ-imﬂﬂ equ @ Tm above equation,
N J-ﬂ
xey = 1L £ [ Xple) + ] X (t‘}j a
N k=0

a—
-

|
Z
l\f\ '

- |
Lipfk]‘ IKI(”E [fm (JF"‘H) Ik ?m[%ﬁ”mi\

0

T
|



i 6%
4 r) cog 2V | ai
ceo = m(r-um) P 1 Xelr) s (2 )

z\—

+ JXxglr) Cos (EFTIL r:rn) - Kqlr) -?"r”(ﬂtrn)}
r

” . J L—@
Lr:rmpnhm% E’E?W @ i@,

______|

M-
Tplm) = J_ [ tos (2T -
N i Xp_(t} S[__I:E_Lrﬁ) - }{I(I:'.] SIWK_—%LL tfﬂﬂ
1 N-1 L@
r.(m) = ( ‘(rr ol
r * féﬂ { Xe(t) sim %_H_:m) + Xi(e) cgz(% trﬂ_,J
I~
3
case 1) FKeal Valued Sequemces
jb 1(m) & veak , them
X(H-t) = ¥ () = X(-1)
- ."'I "\'.L\'

hod, | x0n-e)] = (k) awo L NN -E) -

I '[f.'h,l | |'*'n‘|f 'I‘If'n] ( ) |'|,l"l‘|{ L IL-r‘l'r L A

!Jr‘-- (i I"T'lllifﬂ-r'r'l lltl"m f'lifv f'.'*'.l
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Cose 2) Real and evem seguemce

f].b 1(m) is real amd evem , Haal is
xln) = x(N-mM) , p=<mM = N-1

them ‘?C[}“-@ lji'e[is Xi(e)=0. Hemce Hee DFT

reduces fo
N
X(c) = mi_n x(w) os[2TEM) | oz ken-t
wheve X(k) 18 real valued amd evem.

simce Xg(k) =0, fre IDFT veduces to

M=l
x(m) = J'PT < x(e) mg(:zrrth L0EME N-|

Cose 2) Reol amd odd seguemce

3 ol is veal amd odd, Hat is
r(m) = —x(N—") | 0£ME N-L

them equ@ yelds  Xplie)=0. Hemee

M-I
X(k) = -] & xm ﬂim(l_“__“'-""'j 0<k < N-I
Mm=0 A

hch 12 |mr€[\\j {'n*vxmau'mmlj amd odd.

simte Xp(k)=0, the JIDFI veduces {o

M- |
fn) = j < X(k) sirn(ﬂﬂ) GEM e N-|
N “g-o N
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Case 4) Puvely Imagimavy sequemie
N o ol

fn s care  2(m) = J x7(m).

Eqms 6) 1 ®) veduer Jo
M-

KR(\C‘J = £ xy(m) sim 2Tkm
m=0 N
N-1

X{(d) = < ap(m) cs 2mem
m=0 N

We ohsewe tho Xp(k) is odd amd Xg(k) is evem.
i x2,(m) is 0dd, them Xi(c) =0 , hemce X(i)
s PurE(,j real .

jb 1r(m) is €vem, #em Xelkl =0 hemte X(ic)

is Pufg[/:! fﬁﬂfﬁffﬂﬂ\'y.
‘:]he_ Sjﬂ'ﬂﬂe‘f'tj PTDPET{CTES abone f"mﬂ.U Le Skl"?“m“lﬁtri'ﬂpd

os bﬂliaws :

E [ 1]
a(m) = %M 'x:if“‘*] + J xr(m) +j_?f(wﬂ

— N

s

X(k) = fﬁm 1 xgm + ) Xr () +_j7_;;§ (k)
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PROPERTIES OF THE DFT

PROPERTY TIME DPOMALIMN FREGUENCY DOMAIN
PE\"'.Dditf‘:tj Llm) = X (m+n) X(e) = X(e+N)
Lff‘nﬂm'ff‘j OLILCW"!'} + ﬂl'lg_[m] ﬂi_}{i[;] + a4 x;-,[k:]
Tieme Revevsal 2 N-m) X(N-k)
Civeulay Tiome Slajf ®({n=d))), ;{(M.E-I}%ﬁi
Civewlar Freguem 2 (m) @20 dm X((¢—

St e N (( i))H

Complex [’mﬂj uﬁod‘e *(m) X*(M—1)

Crrenlate Comuolutien  Xy(m) () Zy(m) X1(e) x,(x)

Civculah Covrelatiom %(m) (N) ﬁ*[—rrﬂ X(k) Y*(x)

Multplicedion of, two ACHERCY -::I_ [kq_ (ic) (V) Kl&il

soqQuemnles
CUJ M=l

o Sl
Z N §la) 5 = KV

Parseuals Theorem = "
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@) A 4ag8 poimt DFT of @ real valued sequemce
a(m)  har fhe ﬁDHDwirﬂj DFT samples

X(o) =2 X(249) = 2.9

X(n) = T+j21 X (309) = - h-]1.9
X (k) =—2.2-J 1S X(ts) = 2-j0.%
x(ng) = s+Jjo# X(yp) = -2.2 4] 1S

X(r) = —HF+]19 X(ky) = 1 -ja.1
Jhe sther samples have a value zevo. Fimd Hhe
valne ol Ky Ky ka4
Solmi—  For veal valued seguemce,
Wel,  X(e) = X¥(n-k)

Given N=HAY8,
a) Rr k=42, X(412) = X(498-41)
= X¥* (26
or x(86) = x*¥(412)
.
= (—-2.14\]‘15)
K(86) = ~2.9 - J1S = X(e)

inu]t-'l = HG ‘



b) for k= %09, X(209) = X*(498- 209)
= x*(129)
ov  X(189) = X*(209)
=(-44-719)"
x(189) = -4+ +J 19 = X(ks)

. Ez - i‘ECIJ

c) Hv £= 12, x(n2) = x*(uqe - 1)
= X¥( 286)

ov X(286) = X Cu2)
=(3 + jo)*

x(286) T 3-Jot = X(g,)

Q) dre=u,  x() = x*(4ag-1n)
= X*(ue%)
or - X(4eH) = x*Cn)
= (4 +ja)"
X(us1) = 1-jat = X(k)
ey = et

Heme, k =86, k, =286, L,= |8 4 kK, =u8%

68
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Fimd the #-poimt  DFTs % the two

Seqemces x{n) .Ljirn} usrmg a Sr‘mﬁfe ‘TFﬂfmt DET
)= Jusion) 4 ym=ha,a,,).
Solon -

Fromn the givem Eofmbfﬁ"ll'*’ﬂj the twe 3equemeey
alm)  ound 35""1} to  Creolk o Gommplex Sequemce him),
With, him) = x(m) -i—jfj("ﬂ) , 0=M <y

¢l = g () th)f, (EJ—EJJF i, (|+j)}

pe

‘]a.b'*‘f‘ﬂfa DFT, Hy = hy Wi
LORK) = [:+2j at+2] ] H—j] [vov v
V=)o)
I ) \ -1
b i j ~ | —J

W) = [ ure] 2 -2 2] |
= H¥(e) = [ f—l—Ej 2 i _g’j]
Usimg e velodion,  y(p) = HCe) + 1 (I

2
% (o) = Ho) ¥ Hﬂ ) ['Ll#ﬂj) _{f[irﬁ_j,]

fov =0,

2 o

v p=1, x(1) = h()4 HY((-1)y = H(L) + HY(3)
a2 2.
- 2 -3 _ lnj

—

} R ——
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b k=2, X@) = @I HHRE), _ We) 4 HG)

—

2 2

W

—

2 ——

Py £=8, X(3) = th_-z;}Jwa_m, = He) 4 HY()

2

s
= 2) 42 — |.|,_j
2 —
Axir = fu, 60, 2 000
Aiso , Y(k) = Hc) - H*((-e)n
2
b k=0, M) = RO HTO el - ue]
2\] -;_';_j —
bopet, M) = KO- WYy o HA)- RAG)
f 513 ;J
= 1+Ej = |"j
.'.i'_j —_—
by p=2,  Y(2) = W)= W2y = Hiz) — H¥(2)
.____Ij Y
- -2+2  _
2 i | .
.lfw =3, “{{’_';] =  H(2) - H’""(('—E.‘]hl = 1'@““’ __1_'1_(1}
2]
2) -2 )
uj B i

N(y) = 5 & (-3), o, fHJ)}
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@ Let xplm) be a periodic  Sequemre  poiHa
bumdmmem*rﬂl peviod N.oIf Hhe N- poimt DFT{IF{W}
= Xy(e) amd BN-poimt  DET hapm} = x,(p)

(1) Fimd the velatiomship betweem X, (i) « Xa(E ).
(1) Ueﬁb\j e Olopre result for {D"} £ o, 1**:%'3.

solmi- (i)  \WkT N-poimt DFT Eﬂ"ﬂ"l} = X(k)

—_—

{3 Bl
— ‘I.[ﬂ‘"l-‘j wﬂtm
mM=0
= leen
N-pdiok DFT E"L?[ﬂ"ﬁk = Xa () = £ () Wy
M=0
3N o
n=0
M- on M- £ (o)
Xﬁft] = 2_ 'I?["ﬁ] NEH + 2 ‘IP ['TH-'HH L"an
n=0 n=0
N-) Elntan)
+ /Z” iiP[:f‘ni-‘ﬂ-Hj NSH
m=0
L Emn N Em kN
= 2 %) Wy, + Z %) Wy Wy
- e
A , e 2EN Y Fyomm Pt'n't‘-du‘r
Y i ‘IF(M‘] N.‘.’-H 'w-'*‘-H ‘“II l"nlud',
=0

:lp{m IN) = Tpf'ﬂN]
L ..111[ Mt :'.H'} — ’Ime]
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NE -J20L e ot
aINE 2¥ mk MK
1l Way = W, LW = W3,
[ M-I
06 ) = " 2 nEe
Xs(*) éi?{m-]{i+m3 F W, | W3
=0
ay e )
mia e =
,[1+w3+w3 < xplm)
M=o

X, () = {1 +wf+w;1 Xl["’/ﬂ

i) Givem xytm) = [, 2}
s DFT, Xele) = 2 +UJ::_

tolo) = J 2,0 21 21} G DFT

o ik
Xs(K) = 2 + W + 2 v Wy v2we” e

e+ Wg
e L Kl
Wg = Wy = Wy
tla s k
e Yo(e) = [‘1+ WLE_B + We ['J- Wy J&}
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@ Suppose Haod You ahe givem A program to
b..“md Hhe DET Eb a emplex - valued Sequence
2fm). How cam we use this pregram  to fimd
e {mvevse DFT OiB X(E).

ol = WK T,
M-I
DET [l ::[rn'lB = }{C'c,]. = é xlm) w,f'm —-—@
M=o
M-I o
IoFT b X} = %) =lg xE Wy —@

¥ () = L *
N iﬂ} X*¥(E) Wy
N-) o
or N x¥(m) = & X)Wy
£=0

Fromn ﬂbsew‘fmca fre GbOVE €Gu , L€ Cou Use

DFT  program o E,Grm?u.’re IDFT I:J-j Cﬂltuloch'ma

X*(1c) oud bq"mdimfd ike DET . The mdpm,, is

N 2¥(m) . Scak If 'ﬂj -iN-— oma  take it cgu\“}uam

7 ¥{(m)

KELL'{E__ )ﬁ\’“@f +— _If!;k _ﬂf_ ﬂ———-} x )



@ Comsider the Sequemce  x(m) = L4 sim) + 3 §lm—1)
+ 28(m-2) + &(m-3).
Let x(£) be the 6-poimb DFT U{] xm). Fimd

e brm.r'fe lemcam sequemce 3(*1'1] Had  has
a6~ poimt DFT V() = Waqt X(k).

S~ Given xlm) = 4g(m) + 3 Clm—1) +2 S(m-a)
+ g(m-2)

= DET
TOX) = M oF 3w bW Wt

Ao, given Y(g) = w:n: X
1.|
Yy = W' [ Wt 2WE y o, 4 wzt]

i s 6T e
= 'IH WE + 3 WE + 2 WE + L\JE

6

D F E
NLT, h‘\]g = NE = 4 Ll\-IE — wé

/

st k.
o M) = "I‘J"J;;:W'.!r sWg + 2 % We

h

) = 2 v W W e

ﬂmﬂmaa TDF1 ,

Yln) = 28[n)  §lnm-1) + hS(m-y) +
35(m-9

)
ﬂ_(m‘\: b2, 1, 0,0, L;f:ﬂlJ

!
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(32) 4 'I.(r‘n‘i=5ﬂ., 20,3, 2,4, 45},

Euc.lmﬁil—?ﬂwe bol!om'rmra (i) xt(o) (i) X (y) {|1| éx{d
(W) < [x)|”
-0

Sc:lrn -
(I) Fromm  the debm (UE} DFT e howe
M-
X(x) = = L (m) ["\JH
N=8, n=e 3
ot l:':Dj. Kfﬂ) —_ é__ o (o) 'WEU
M=o
'_‘rl'_
= 5 wfm) = 1L+2+0+3
o _ﬂ “2+4+F+s
)x{.ﬂ"] =

(W .. en
X(e) = = xln) Wy

mz=0D

Pv N=R , Let k=¥
() = 1 Lon
< 1(m) Wy

m=0 aﬂ‘
) ST L
M
= % (o) (~1 , -Im
Z =men (-6

K(“n} = aqlg) — i) ¢ () = x(2) +xly) - «(s)
pae) = %)

(K = -3 |



+6

i) To ffmd _25 ()
k=0

Comsiden the IDET equatien,

M-
rln) = 1 X —km
I Sl
fov N=Q, put m=0,
alo) = z
- = X(k)
k=0
1
W S Xle) = 8 alb) =8
k=0 —
, 7
V) Jo find = [xe)|*
=0
From Pavsevals Jheovem,
M- . M- i
= e = L =z k)|
m=0 N =0
= 2 2 et
oY - N \
2 \XCL]\ m=0

k-0
! 1. !
fr n=ts 2 xel” = g[;\mﬂ
e m=0

- 2 [H\’ PR L R T R o
L +151‘“1

= %[1¥L|+H+L|1~IE,+H"|+1€]

-4.- -
= Ix@)|~ = 264
k= .
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Llet ax(m) be a finite Jﬂmaﬁ‘n Seguemce with
X(e) = {0, 04]), L ,0-])} Using - the proporties
giﬂ DFT , bimci DFTs ﬂﬁ the 6nifawim3 Sequemces

T |

() xlm = e )

(i) ln) = cosTen x(m)

("U ‘13['“} = fI[frn-—l]]L,

Salm - (1) Givemn Xy (m) = E‘.J%m x(mn)

12T
ox Tyl = €' ™ xln)

Apptjimca DFT  omd ua:‘mej civcular breﬁ“@’mﬂ
Skt PWPQHH
xi(tlf X(ft—ﬂ—“l.l
v X (e} = 5 (-1, o, (1+]) i}

——
p—

(1)  &ivem o (m) = Cﬁs_'%m 2 ()
0¥ Xy () = ,1?_: [EJ%‘“ +E‘l'%'“] 2 (m)
= .}; [ei?"gm } frj%rﬂ ()
HPP‘“&"‘“"& DFT tw  bofn Sider  amd u:.':m:j Civtdan

b‘f’@ﬁﬁl?m‘lj :’.%L»i,ﬁf [:rrr:m[wﬁrj.
X2(e) = [ X((£-1))y + x({tmhj

2
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Givem  X(k) = { 0o, (), 1, (I-j)}

X((c-0y = ] O-1), 0, (1)), 2}
X(Ceady = | 0+)), & (l-J)I 0)
o xm(ﬁ‘} [

Ji
ngt [L 0.5 / 1, 0-5'}

i) Griven Agn) = -1
Laking DFT en beth siden amd usim? Circwlog
£Ewﬂe-s!ni¢b’r PmP@J-j~

Xsle) = Wy X ()
af k=0, Xslo) = W X[o) =0
of k=1, Xa(1) = Wy x(r) = (’J)( 1+3) = (=)
o p=a, XaB) = WIXE) = ()0) = -1
ar £=3, X)) = WE x@ = JU-]) = 14

W Xe(e) = b oy =i, - 4 ]
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83  Ler xlm) = ,1-1,1_.3,-{1} Witk X(r) = {lﬂ -242),
—3, _g._gj}. Fimd the DFT 0‘{) %Xy (m) = 5 40,9,
0, 3,0, 4, G} without fltmatejf Ccllcuft?d'ifna He
DFT.
Soloi— pry ey = Xy(e) = i- Ty(m) W™
™ =0
and-bwj abore Summatien [mtp evem and odd
posts. %

2mE -
Xy()) = £ xalmWy + é vy (rm+1) (20
m=0 =0
N=8,
g _lfn'k_'_ - N d.d
X,06) = 2 xulam)Wg 40 s 0dd mumbaned
=0 Samplus are
zevo.
3 N
\.r(j_[t} = gn I{m‘} WEIL
m=
% ne )
W) = £ ) Wy oY Xyl = X(c), m=0,12,3
ki X(k), M= y,56,2
Xs(6) = X(x)

- ?EI }
Uﬂimtb |wviuditlf:1 propent

ik
Xaly) = x(y) = Xxlo) ... ...
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@ et X(0) be O l-poimb DFT of a g~
real Sequeme x(m). The fivst 8 samples g
X(k) ove guem by
X(o) = 1 | X = 1432, X[2) =2+jy
X3 = =35, XlW)=-2+j2, X(s) = 6+j2
X(e) = —=-j2 , X(@) =10

Deteyemime  Hae ‘rermu.imimﬁ sarmplgg n% x() .
Evalwod the fpllowlug  fumctions  of a(m) cofthoud
Computi Yhe IDFT x(e).

tine b Xel
(i) afe)  (it) A=) (i) = alm)

n=0
1% -
: yfl 13
(W £ e F"any (V) £ |xtm)|”
m=0 M=0
olmi—~  for a vead ualued Sequemer  x(m), Sjwmehﬁ:

Pmpm»ﬁj LTJU read.  valuwed Sequemce,,
(k) = x*(n-x) = x*((-K),

w(g) = x¥(w-8) = X"(6) = —2+]3
xay = x¥ (y-9) = X*(s) = €-Jj3
X(10) = X¥ (w-10) = xX (1) -~ 2-3"
(1) = x¥(w-n) = xX¥() = 143s

x(in) = X ¥ (""l—llj " }‘1[.}} - -3-.ij
x(9) = x*(w-1) = X*() = -) —js



< x(k)

'
q...

5 L X0+ x4 x6)+ - 4 x(] |

o) = 32 - 9.985%
1Y
it ) M-
W) we bmows, g = L E g I b
N ¥=o
_ = 1 B 121 by,
'[\.|_lL-||r ot Ti; é X.C'L]E Iy
k=0
1%
Pt n= 14, x=t) = _IL ﬁ_(' )LK&_)
['"I k-0
= -2 _  _0.85%]
1Y e
St 2 "'.lj'ﬂ '[_'_-ml
Gu\ X(p) = < x(wm)Ee Ty
"M=0D
%
Put =0, X(Q.} = :;': x(m)
M-
I,
., < xm) = X)) = D
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- iy v 2L um -
iv)  Jhe DET "‘.b € 7" o(m) & Um) js

¥
X[[t—h‘ﬂ‘._[
- )
—3210
we B e = £ e R ) 0£EZ N-|
=0
\2, j':l_[[ —jlﬂ
-;ﬂ X[{:t'_' LlT)lH — i & '?rmfl(m‘al e —lqk—rﬂ
nN=0
?U&f 'L:D; 1% -:.i[j.ﬂ_.lﬂ
X({(-4N, = =2 e F xlm)
M=0
S YT o
o = ez am) = X(w0)
e
= —-2-)L
V) Fom  Pavsevals Theoveom ;
M- | N- 1 9
= ) = = X
=0 k=0
i, 1% 1%
W 2 ) = 7‘; = X0~
M=O =0




BEC502
Model Question Paper with effect from 2023-24(CBCS Scheme)
USN I [ [ ]

Fifth Semester B.E. Degree Examination
Digital Signal Processing
Time: 03 Hours Max. Marks: 100

Note: Answer any FIVE full questions, choosing at least ONE question from each MODULE.

SI Questions BTL | Marks
No
Module 1
Q1 | a | Determine the energy and power of the unit step sequence. L2 4
b | Consider an LTI system with input x(n) & unit impulse response h(n) given L3 8
below, Compute y(n), x(n) = 2" u(-n) & h(n) =u(n).
¢ | Define signal with example. Explain Classification of signals with examples also L2 8
define Elementary Discrete-Time Signals.
OR
Q2 | a | Determine the response of the following systems to the input signal L2 4
xm)= n] 3<n<3
0, otherwise
a) ym) =x(m) b) ym) =x@-1) ¢) y(m)=x(n+1)
d) y(n) = 1/3 [x(n+1) + x(n)+x(n-1)]
b | The impulse response of a linear time-invariant system is h (n) = {1, 2, 1, -1}. L3 8
Determine the response of the system to the input signal x (n) = {1, 2, 3, 1}.
¢ | Define system with example. Explain Classification of Discrete-Time system with L2 8
examples.
Module 2
Q3 | a | Determine the z-transform of the signal L3 8
x(n)=a"um) =) n, n>0
0, n<o0
and x(n) = - ¢” u(-n-1) ={ 0, n>0
-a", n<-1
b | Determine the z-transforms of the following finite-duration signals. L3 4
xi(n) ={1,2,5,7,0,1} (b) x2(n) ={1,2,5,7,0,1}.
T T
¢ | Mention the properties of Z transform with equations. L2 8
OR
Q4 | a | Perform Circular convolution of the following sequences using concentric circle L3 8
method: x1(n) = {2, 1, 2, 1}, x(n) ={1, 2, 3, 4}.
Find the DFT of the sequence x(n) = o(n) + 26(n — 2) + é(n — 3). L3 4
¢ | Explain Frequency Domain Sampling and Reconstruction of Discrete Time L2 8
Signals with the help of necessary equations.
Module 3
QS5 | a | State and prove the following properties: L2 10
i) Circular Time shift Property ii) Circular Frequency shift Property
iii) Parsevals theorem iv) Complex conjugate property
b | Use the 8 point radix-2 DIT-FFT algorithm to find the DFT of the sequence L3 10
x(n)={1,1,1,1,0,0,0,0}.

OR

@#*@




Q6 Illustrate the Inverse Decimation in Time FFT algorithm with the help of L2 10
necessary equations and signal flow representation
Using linear convolution find y(n)= x(n) h(n) for the sequences x(n)={1, 2, -1, 2, 3, L3 10
-2,-3,-1,1,1, 2, -1} & h(n)={1, 2}. Compare the result by solving the problem
using overlap save & overlap add method.
Module 4
Q7 The desired frequency response of a low pass filter is given by L3 10
Ha(e'®) =Ha(w) = e, |o|<3n/4
0, 3n/d4<|o|<=n
Determine the frequency response of the FIR filter if Hamming window is used
with M=7.
Mention different windows with equations used in design of FIR filters. L2 5
Realize the system function H(z) =1+ 3/2z"" + 4/527> +5/9 2+ 1/9 7 * using L2 5
direct form .
OR
Q8 A filter is to be designed with the desired frequency response L3 10
Ha(e™) =Ha(w) 50, -71/4< o <n/4
e n/d<|o|<m
Find the frequency response of the FIR filter designed using a rectangular
window defined below: wr(n)= 1, 0<n<4
0, otherwise
Mention the Design steps followed in design of Linear Phase FIR Filter. L2 5
Realize a cascade form FIR filter for the following system function. L2 5
Hz)=(1+Y%z'+272) A+%z '+ z7?).
Module 5§
Q9 Design a digital lowpass Butterworth filter with the following specifications: L3 8
1. 3 dB attenuation at the passband frequency of 1.5 kHz
2. 10 dB stopband attenuation at the frequency of 3 kHz
3. Sampling frequency of 8,000 Hz.
The normalized low pass filter with a cutoff frequency of 1 rad/sec is given as: L3 7
Hp(s) = 1/(s+1)
Use the given Hy(s) and the BLT to design a corresponding digital IIR lowpass
filter with a cutoff frequency of 15 Hz and a sampling rate of 90 Hz.
Explain Bilinear Transformation design procedure in designing IIR filters. L2 5
OR
Q10 Obtain analog lowpass prototype transformation to the low pass, high pass, band L2 8
pass filter, band stop filters.
Obtain direct form I and direct form II for the system described by L3 7
y(m)=-0.1y (n—1)+ 0.2y (n —2) + 3x(n) + 3.6 x(n — 1) + 0.6 x(n-2) .
Given the following IIR filter: y(n) = 0.2x(n) +0.4x(n-1)+0.5y(n-1), Determine the L2 5

transfer function, nonzero coefficients, and impulse response.

@#*@
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