5 Approved by AICTE, New Delhi, Affiliated to VTU, Belagaavi, Recognised by GOK, iR
NBA Accredited (CSE)
(balapura Post, Lingapura, Koratagere Road, Tumkur- 572 106, Karnataka

&

\‘, INSTITUTIONS
INNOVATION

A couNeL

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

DATA STRUCTURE AND ITS APPLICATION
(BCS304)

Prepared by:
Mrs.Shivaranjani S.S
Assistant Professor
Department of AI&DS
AIT, Tumkur

DATA STRUCTURES-BCS304 MODULE 2

MODULE 2
QUEUES: Queues, Circular Queues, Using Dynamic Arrays, Multiple Stacks and queues.
LINKED LISTS : Singly Linked, Lists and Chains, Representing Chains in C, Linked Stacks

and Queues, Polynomials.

QUEUES ABSTRACT DATATYPE

DEFINITION
“A queue is an ordered list in which insertions (additions, pushes) and deletions (removals and

pops) take place at different ends.”

The end at which new elements are added is called the rear, and that from which old elements
are deleted is called the front.

Given a queue Q = (ao, ai,......... an-1) , a0, s the front element a,.1 is the rear element, aj+1 is
behind a; 0<=i <n-1.

If the elements are inserted A, B, C, D and E in this order, then A is the first element deleted
from the queue. Since the first element inserted into a queue is the first element removed,

queues are also known as First-In-First-Out (FIFO) lists.

QUEUE REPRESENTATION USING ARRAY

Queues may be represented by one-way lists or linear arrays.

Queues will be maintained by a linear array QUEUE and two pointer variables: FRONT-

containing the location of the front element of the queue
REAR-containing the location of the rear element of the queue.

The condition FRONT = NULL will indicate that the queue is empty.

Figure indicates the way elements will be deleted from the queue and the way new elements

will be added to the queue.

Whenever an element is deleted from the queue, the value of FRONT is increased by 1; this

can be implemented by the assignment FRONT := FRONT + 1

When an element is added to the queue, the value of REAR is increased by 1; this can be

implemented by the assignment REAR := REAR + 1

DATA STRUCTURES-BCS304 MODULE 2

D |¢ rear
C |¢ rear | C
B [« rear | B B g © rear
A | ¢ pear A ¢ front | A |« front| A |« front | B |e¢ front
+« front
0 1 2 3 4 o 1 2 3 4
AL T T T 1 Blslclnl
f f !
fr Laa f add r
0 1 2 3 4 0o 1 2 3 4
[Aa s] T T 1 A [B[c[p] E |
tt f f
f r I r
add add
0 1 2 3 4 0 1 2 3 4
[A B]c] T] | |Blc b [E |
1 t t !
I r f r
add delete

structure Queue is
ohjects: a finite ordered list with zero or more elements,
functions:
for all quene € Queue, item € element, max_quene _size € positive integer
Queue CreateQ(max —queue _size) ::=
create an empty queue whose maximum Size is max—queue —size
Boolean IsFullQ{queue, max_queue —size) ::=
if (number of elements in gueue == max_queue _size)
return TRUE
else return FALSE
Quene AddQ(queue, item) 1=
if (IsFullQ(queue)) queue _ full
else insert item at rear of gueue and rewurn gueue
Boolean IsSEmptyQ(queue) ::=
if (queue == CreateQ(max —qgueue —size))
return TRUE
else return FALSE
Element DeleteQ(queue) ::=
if (IsEmptyQ(gueue)) return
else remove and return the irem at front of queue,

Structure 3.2: Abstract data type Queue

DATA STRUCTURES-BCS304 MODULE 2

Implementation of the queue operations as follows.

1. Queue Create

Queue CreateQ(maxQueueSize) ::==
#define MAX QUEUE_ SIZE 100 /* maximum queue size */
typedef struct
{
int key;
/* other fields */
} element;
element queue[MAX QUEUE SIZE];
int rear = -1;

int front = -1;

2. Boolean ISEmptyQ(queue) ::= front ==rear
3. Boolean IsFullQ(queue) ::=rear == MAX QUEUE SIZE-1

In the queue, two variables are used which are front and rear. The queue increments rear in

addq() and front in delete(). The function calls would be addq (item); and item =delete();

4. addq(item)

void addq(int *rear, element item)
{
// 'add an item to the queue
if (rear == MAX_ QUEUE_SIZE-1)
{ queue_Full();
return;
§
queue [++rear]| = item;

}

Program: Add to a queue

DATA STRUCTURES-BCS304 MODULE 2

5. deleteq()

element deleteq(int *front, int *rear)
{ /* remove element at the front of the queue */
if (front == rear)
return queue Empty(); /* return an error key

return queue[-++front];

}

Program: Delete from a queue

6. queueFull()

The queueFull function which prints an error message and terminates execution

void queueFull()
{

fprintf(stderr, "Queue is full, cannot add element");

exit(EXIT _FAILURE);

Example: Job scheduling

e Queues are frequently used in creation of a job queue by an operating system. If the
operating system does not use priorities, then the jobs are processed in the order
they enter the system.

e Figure illustrates how an operating system process jobs using a sequential

representation for its queue.

tront |rear | Q[0] Q[1] Q[2] Q[3] Comments

-1 -1 Queue 1s empty

-1 0 J1 Job 1 1s added

-1 1 J1 J2 Job 2 is added

-1 2 Il J2 I3 Job 3 1s added
0 2 J2 I3 Job 1 1s deleted
1 2 I3 Job 2 is deleted

DATA STRUCTURES-BCS304 MODULE 2

Drawback of Queue

When item enters and deleted from the queue, the queue gradually shifts to the right as

shown in figure.

C |D | E

1 0 1 2 3 4
f f

f r

In this above situation, when we try to insert another item, which shows that the queue is
full . This means that the rear index equals to MAX QUEUE SIZE -1. But even if the

space is available at the front end, rear insertion cannot be done.

Overcome of Drawback using different methods

Method 1:

e When an item is deleted from the queue, move the entire queue to the left so that the
first element is again at queue[0] and front is at -1. It should also recalculate rear so
that it is correctly positioned.

e Shifting an array is very time-consuming when there are many elements in queue &

queueFull has worst case complexity of O(MAX QUEUE_SIZE)

0 1 2 3 4
[A[B[c[DE |
-1 0 1 2 3 4
t t
f r
0 1 2 3 4
[B|c[p[E] |
-1 0 1 2 3 4
t t
f r

0o 1 2 3 4
cpfe] | |
-1 0 1 2 3 4

f f

f r
item B is deleted

DATA STRUCTURES-BCS304

Method 2:

Circular Queue

e It is “The queue which wrap around the end of the array.” The array positions are

arranged in a circle.

e In this convention the variable front is changed. front variable points one position

counterclockwise from the location of the front element in the queue. The

convention for rear is unchanged.

CIRCULAR QUEUES

e [t is “The queue which wrap around the end of the array.” The array positions are

arranged in a circle as shown in figure.

e In this convention the variable front is changed. front variable points one position

counterclockwise from the location of the front element in the queue. The

convention for rear is unchanged.

rear

Figure 3.6: Empty and nonempty circular queues

MODULE 2

DATA STRUCTURES-BCS304 MODULE 2

Implementation of Circular Queue Operations

When the array is viewed as a circle, each array position has a next and a previous
position. The position next to MAX-QUEUE-SIZE -1 is 0, and the position that
precedes 0 is MAX-QUEUE-SIZE -1.

When the queue rear is at MAX QUEUE SIZE-1, the next element is inserted at
position 0.

In circular queue, the variables front and rear are moved from their current
position to the next position in clockwise direction. This may be done using code

if (rear==MAX_ QUEUE_SIZE-1)
rear = 0;
else reart++;

Addition & Deletion

To add an element, increment rear one position clockwise and insert at the new
position. Here the MAX_ QUEUE_SIZE is 8 and if all 8 elements are added into
queue and that can be represented in below figure (a).

To delete an element, increment front one position clockwise. The element A is
deleted from queue and if we perform 6 deletions from the queue of Figure (b) in
this fashion, then queue becomes empty and that front =rear.

If the element I is added into the queue as in figure (c), then rear needs to
increment by 1 and the value of rear is 8. Since queue is circular, the next
position should be 0 instead of 8.

This can be done by using the modulus operator, which computes remainders.

DATA STRUCTURES-BCS304 MODULE 2

/

rear

rear

(a) (b) (c)

void addq(element item)
{ /* add an item to the queue */
rear = (rear +1) % MAX QUEUE SIZE;
if (front == rear)
queueFull(rear); /* print error and exit */
queue [rear] = item;

}

Program: Add to a circular queue

element deleteq()
{ /* remove front element from the queue */
element item;
if (front == rear)
return queueEmpty(); /* return an error key */
front = (front+1)% MAX QUEUE_ SIZE;
return queue[front];

Program: Delete from a circular queue

DATA STRUCTURES-BCS304 MODULE 2

CIRCULAR QUEUES USING DYNAMIC ARRAYS

e A dynamically allocated a

e rray is used to hold the queue elements. Let capacity be the number of positions in

the array queue.

e To add an element to a full queue, first increase the size of this array using a

function realloc.

Consider the full queue of figure (a). This figure shows a queue with seven elements in

an array whose capacity is 8. A circular queue is flatten out the array as in Figure (b).

AR
E‘.aq 01 0] [Bl [4 [581 [6] [7]

C|D E F G A B
front= 5 front= 5 rear =4
rear =4
(a) A full circular quene (b) Flattened view of circular full queue

Figure (c) shows the array after array doubling by relloc

0] 1] 31 31 [41 [53 [6] [71 [8] [5]1 [10] [11] [12] [13] [14] [13]

C|D |E F G A | B

front= 5 rear = 4
(c) After array doubling
To get a proper circular queue configuration, slide the elements in the right segment (i.e.,

elements A and B) to the right end of the array as in figure (d)

(0] 1] [21 [B1 [(5] [6] [71 [8] [[10] [11] [1Z] [13] [14] [15]

C|D |k |F | G Al B

front= 13 rear = 4
(d After shifting right segment

DATA STRUCTURES-BCS304 MODULE 2

To obtain the configuration as shown in figure (e), follow the steps
1) Create a new array newQueue of twice the capacity.
2) Copy the second segment (i.e., the elements queue [front +1] through queue
[capacity-1]) to positions in newQueue beginning at 0.
3) Copy the first segment (i.e., the elements queue [0] through queue [rear]) to

positions in newQueue beginning at capacity — front — 1.

0] M1 a1 [(31 [4 [51 [6] [71 [8] [51 [10] [11] [12] [13] [14] [15]

A/'B|C|D |E |F |G

front= 15 rear = 6

(e) Alternative configuration
Below program gives the code to add to a circular queue using a dynamically allocated array.

void addq(element item)
{ /* add an item to the queue
rear = (rear +1) % capacity;
if(front == rear)
queueFull(); /* double capacity */

queue(rear| = item;

Below program obtains the configuration of figure (e) and gives the code for queueFull.
The function copy (a,b,c) copies elements from locations a through b-1 to locations

beginning at c.

void queueFull()
{ /* allocate an array with twice the capacity */
element *newQueue;
MALLOC (newQueue, 2 * capacity * sizeof(* queue));
/* copy from queue to newQueue */
int start = (front +) % capacity;
if (start < 2) /* no wrap around */
copy(queuetstart, queuetstartt+capacity-1,newQueue);
else

{ /* queue wrap around */

10

DATA STRUCTURES-BCS304 MODULE 2

copy(queue, queue+tcapacity, newQueue);
copy(queue, queuetrear+1, newQueue+capacity-start);
h
/* switch to newQueue*/
front = 2*capacity — 1;
rear = capacity — 2;
capacity * =2;
free(queue);

queue= newQueue;

Program: queueFull

MULTIPLE STACKS AND QUEUES

In multiple stacks, we examine only sequential mappings of stacks into an array.
The array is one dimensional which is memory[MEMORY_SIZE|. Assume n
stacks are needed, and then divide the available memory into n segments. The array
is divided in proportion if the expected sizes of the various stacks are known.
Otherwise, divide the memory into equal segments.

Assume that i refers to the stack number of one of the n stacks. To establish this
stack, create indices for both the bottom and top positions of this stack.
boundaryli] points to the position immediately to the left of the bottom element of

stack i, top[i] points to the top element. Stack i is empty iff boundary[i]=top/i].

The declarations are:

#define MEMORY_SIZE 100 /* size of memory */
#define MAX STACKS 10 /* max number of stacks plus 1 */
element memory[MEMORY _SIZE]; /* global memory declaration */

int top [MAX STACKS];
int boundary [MAX STACKS] ;
int n; /*number of stacks entered by the user */

11

DATA STRUCTURES-BCS304 MODULE 2

To divide the array into roughly equal segments

top[0] = boundary[0] =-1;
for (= 13j<n; j++)

top[j] = boundary[j] = (MEMORY _SIZE /n) * j;
boundary[n] = MEMORY _ SIZE - 1;

0 [m/n] 2 [m/n] m-1
Tbﬂun&’aq'[ﬂ] boundary[l] bowundary[n]
top[0] top[1]

All stacks are empty and divided into roughly equal segments

Figure: Initial configuration for n stacks in memory [m].
In the figure, n is the number of stacks entered by the user, n < MAX STACKS, and
m =MEMORY _SIZE. Stack i grow from boundary[i] + 1 to boundary [i + 1] before it is
full. A boundary for the last stack is needed, so set boundary [n] to MEMORY_SIZE-1.

Implementation of the add operation

void push(int i, element item)
{ /* add an item to the ith stack */
if (top[i] == boundary[i+l])
stackFull(1);
memory[++top[i]] =

item;

Program: Add an item to the ith stack

12

DATA STRUCTURES-BCS304 MODULE 2

Implementation of the delete operation

element pop(int 1)
{ /* remove top element from the ith stack */ if
(top[i] == boundary[i])
return stackEmpty(i);
return memory[top[i]--];

}

The top[i] == boundary[i+1] condition in push implies only that a particular stack ran out of
memory, not that the entire memory is full. But still there may be a lot of unused space
between other stacks in array memory as shown in Figure.

Therefore, create an error recovery function called stackFull , which determines if there is any
free space in memory. If there is space available, it should shift the stacks so that space is

allocated to the full stack.

| . ..

2 |. | . o -
BIOT (0] BI1T f[1] BLY tlid thi+1] tf] '.n1;+l| bn)
bli+l] bBli+2]

b boundary . t=top

13

DATA STRUCTURES-BCS304 MODULE 2

LINKED LIST

DEFINITION
A linked list, or one-way list, is a linear collection of data elements, called nodes, where
the linear order is given by means of pointers. That is, each node is divided into two parts:
e The first part contains the information of the element, and
e The second part, called the link field or nextpointer field, contains the address of
the next node in the list.
A linked list is a dynamic data structure where each element (called a node) is made up of
two items - the data and a reference (or pointer) which points to the next node. A linked list is
a collection of nodes where each node is connected to the next node through a pointer.

first

[BATT o AT o BAT| = -+ —={WAT[0

Usual way to draw a linked list

" 5 - - - o — I ——

- Nextpointer field of third n

Intormation part of third node

Fig: Linked list with 6 nodes

In the above figure each node is pictured with two parts.
> The left part represents the information part of the node, which may contain an entire
record of data items.
> The right part represents the link field of the node
> An arrow drawn from a node to the next node in the list.
> The pointer of the last node contains a special value, called the NULL.
A pointer variable called first which contains the address of the first node. A special case is the

list that has no nodes; such a list is called the null list or empty list and is denoted by the null

pointer in the variable first.

14

DATA STRUCTURES-BCS304 MODULE 2

REPRESENTATION OF LINKED LISTS IN MEMORY
Let LIST be a linked list. Then LIST will be maintained in memory as follows.
1. LIST requires two linear arrays such as DATA and LINK-such that DATA[K] and
LINKJ[K] contains the information part and the nextpointer field of a node of LIST.
2. LIST also requires a variable name such as START which contains the location of
the beginning of the list, and a nextpointer sentinel denoted by NULL-which
indicates the end of the list.
3. The subscripts of the arrays DATA and LINK will be positive, so choose NULL =
0, unless otherwise stated.
The following examples of linked lists indicate that the nodes of a list need not occupy
adjacent elements in the arrays DATA and LINK, and that more than one list may be
maintained in the same linear arrays DATA and LINK. However, each list must have its

own pointer variable giving the location of its first node.

DATA LINK
1 HAT 15
2
3 CAT 4
4 EAT 9
5 GAT 1
6
7 WAT 0
3 BAT 3
9 FAT 5
10
1 VAT 7
Insert GAT to data|5]

15

DATA STRUCTURES-BCS304 MODULE 2

[bar [F—{car [+—fEar [F+—{Far [F—fmar [_|

F GAT

Insert node GAT into list

REPRESENTING CHAIN IN C
The following capabilities are needed to make linked representation
1. A mechanism for defining a node’s structure, that is, the field it contains. So self-
referential structures can be used
2. A way to create new nodes, so MALLOC functions can do this operation
3. A way to remove nodes that no longer needed. The FREE function handles this

operation.

1. Defining a node structure

typedef struct listNode *listPointer
typedef struct

{
char datal4];
listPointer list;
} listNode;

Create a New Empty list

listPointer first = NULL

To create a New Node

MALLOC (first, sizeof(*first));

To place the data into NODE

strcpy(first- data, "BAT”) ;
first-» link = NULL

16

DATA STRUCTURES-BCS304 MODULE 2

* first

first >data — =

B A T 0 NULL

first i T .T | T ?

ﬁrsr — data [0} Jirst — dara [2] first — fink

Jirst > dara [1] Jirst — data [3]
2. Two-node linked list:
listPointer create2 ()
{ /*create a linked list with two nodes*/

listPointer first, second;
MALLOC (first, sizeof (*first));
MALLOC (second, sizeof (*second)) ;
Second->1ink=NULL;
Second->data=20;
First->data=10;
First->link=second;

Return first

Program: create two node list

[

List insertion:

vold insert (listPointer *first, listPointer x)

listPointer temp;

malloc (temp, sizeof (*temp) ;
temp->data=50;

if(*first)

temp->1link;
x=>1ink;

temp->1link;
*first->temp;

17

DATA STRUCTURES-BCS304 MODULE 2

first first X

L
| @
o

Inserting into an empty or nonempty list

4. Deletion from the list:

e Deletion depends on the location of the nodes.
e We have three pointers:
o first points to start of the list,
o x points to the node that we have to delete

o trail points to the node the precedes to x.

void delete(listPointer *first, listPointer trail, listPointer x)

{

if(trail)
trail->1link=x->1ink;
else
*first=(*first)->1link;
free (x);

Deletion from list

S. Printing out a list

void printList(listPointer first)

printf (“The list contains”);
for (;first; first=first->1ink)

Printf (“%44d”, first->data) ;
printf (“\n”) ;

Printing list

18

DATA STRUCTURES-BCS304 MODULE 2

LINKED STACKS AND QUEUES

The below figure shows stacks and queues using linked list. Nodes can easily add or delete a node from the

top of the stack. Nodes can easily add a node to the rear of the queue and add or delete a node at the front

data link

[::I; — top
1]

L’ front : rear
l:]: |] i daia link
[(TFA [FH T F—=— T°

{b) Linked queue
[[0}
(a) Linked stack
Linked Stack
The representation of n < MAX STACKS
#define MAX STACKS 10 /* maximum number of stacks */
typedef struct {
int key;
/* other fields */
}element;

typedef struct stack *stackPointer;
typedef struct {
element data; stackPointer
link;
} stack;
stackPointer top[MAX STACKS];

The initial condition for the stacks is:
top[i] = NULL, O < i< MAX_STACKS

The boundary condition is:
top [1i] = NULL iff the ith stack is empty

19

DATA STRUCTURES-BCS304 MODULE 2

Functions push and pop add and delete items to/from a stack.

void push(int i, element item)
{/* add item to the ith stack */

stackPointer temp;
MALLOC (temp, sizeof (*temp))

temp-data = item;
temp-link = topl[i];
topl[i] = temp;

Add to a linked stack

Function push creates a new node, temp, and places item in the data field and top in the link field. The

variable top is then changed to point to temp. A typical function call to add an element to the ith stack would

be push (i,item).

element pop (int 1)
{ /* remove top element from the ith stack */

stackPointer temp = topl[il;

element item;
if (! temp)
return stackEmpty () ;

item = temp-data;
top[i] = temp-link;
free (temp) ;

return item;

Delete from a linked stack

Function pop returns the top element and changes top to point to the address contained in
its link field. The removed node is then returned to system memory. A typical function

call to delete an element from the ith stack would be item = pop (i);

20

DATA STRUCTURES-BCS304 MODULE 2

Linked Queue
The representation of m < MAX QUEUES queues,

#define MAX-QUEUES 10 /* maximum number of queues */
Typedef struct gqueue *queuePointer;
typedef struct {
element data;
queuePointer link;
} queue;
queuePointer front[MAX QUEUES], rear[MAX QUEUES];

The initial condition for the queues is:

front[1]

NULL, 0 £ i < MAX QUEUES

The boundary condition is:

front[i] NULL iff the ith queue is empty

Functions addq and deleteq implement the add and delete operations for multiple

queues.

void addg(i, item)

{ /* add item to the rear of queue 1 */
queuePointer temp;
MALLOC (temp, sizeof (*temp));
temp-data = item;
temp-link = NULL;
if (front[il])
rear[i] -link = temp;
else
front[i] = temp;
rear[i] = temp;

Program: Add to the rear of a linked queue

Function addq is more complex than push because we must check for an empty queue. If the
queue is empty, then change front to point to the new node; otherwise change rear's link

field to point to the new node. In either case, we then change rear to point to the new node.

element deleteg(int 1)

{/* delete an element from queue 1 */

queuePointer temp = front[i];
element item;

if (! temp)

return queueEmpty () ;

item = temp-data;

front[i]= temp-link;

free (temp) ;

return item;

}

Program: Delete from the front of a linked queue

21

DATA STRUCTURES-BCS304 MODULE 2

Function deleteq is similar to pop since nodes are removing that is currently at the start
of the list. Typical function calls would be addq (i, item); and item = deleteq (i);
APPLICATIONS OF LINKED LISTS — POLYNOMIALS

1. Representation of the polynomial:

AX)=a, 1x™ "+ -+ +a5x"°
where the ai are nonzero coefficients and the ei are nonnegative integer exponents such that
em-1>em-2 >..>el >e0 >0.
Present each term as a node containing coefficient and exponent fields, as well as a pointer
tothe next term.

Assuming that the coefficients are integers, the type declarations are:

typedef struct polyNode
*polyPointer; typedef struct {
int coef; int expon;
polyPointer link;
} polyNode;
polyPointer a,b;

We draw polynomial nodes as:

coef | expon | link

Figure shows how we would store the polynomials

8

a=3x"4+2x% + 1

and ‘
b=8"% =" 4+ 10x°
a [3 |14 l 2378 1=l 1]0D]0
SO ' R SO =
(a)
b—— =1 8 114] sl =31 1D : l'10] 6 0
(b)

1

Figure: Representation of 3x'* +2x%+1 and 8x'*-3x % +10x°

22

DATA STRUCTURES-BCS304 MODULE 2

2. Adding Polynomials

To add two polynomials, examine their terms starting at the nodes pointed to by a and b.

o If the exponents of the two terms are equal, then add the two coefficients and create a new
term for the result, and also move the pointers to the next nodes in a and b.

o If the exponent of the current term in a is less than the exponent of the current term inb,
then create a duplicate term of b, attach this term to the result, called ¢, and advance the
pointer to the next term in b.

o If the exponent of the current term in b is less than the exponent of the current term ina,
then create a duplicate term of a, attach this term to the result, called ¢, and advance the
pointer to the next term in a

Below figure illustrates this process for the polynomials addition.

3 [14 | S =1 0 O
b a
8 | 14 | =] —3] W | - J10] 6 1 O

cl11]J14] 0

(1) a — expon == b — expon
(3 [14] +—={2[8] F—=1]0]0]
1? a
g] =3[0 J—~0]6]0
¢ ”1?714 i 177%,';—71710 E
(i1) a — expon < b — expon
S[E] F—~{2]8] F~1[0]®
a b
8 [14] —}—={3[10] — f:\?o [6]0]
cl11]14] ——= %—_]() e = 2 | 8 _(i

(ii1) a — expon > b — expon

Figure: Generating the first three terms of ¢ = a +b

23

DATA STRUCTURES-BCS304 MODULE 2

The complete addition algorithm is specified by padd()

24

DATA STRUCTURES-BCS304 MODULE 2

Analvsis of padd:

To determine the computing time of padd, first determine which operations contribute to the
cost. For this algorithm, there are three cost measures:

(1) Coefficient additions

(2) Exponent comparisons

(3) Creation of new nodes for ¢

The maximum number of executions of any statement in padd is bounded above by m + n.
Therefore, the computing time is O(m+n). This means that if we implement and run the
algorithm on a computer, the time it takes will be Clm + C2n + C3, where C1, C2, C3 are
constants. Since any algorithm that adds two polynomials must look at each nonzero term at

least once, padd is optimal to within a constant factor.

3. Erasing a Polynomial

Void erase (polyPointer *ptr)
{
polyPointer temp;
while (*ptr)
{
Temp=*ptr;
*ptr=(*ptr)->1link;

Free (temp)

Program:erasing polynomial

4. Circular representation of polynomials
Circular linked list are one they of liner linked list. In which the link fields of last node of the

list contains the address of the first node of the list instead of contains a null pointer.
Advantages:- Circular list are frequency used instead of ordinary linked list because in circular
list all nodes contain a valid address.

The important feature of circular list is as follows.

(1) In a circular list every node is accessible from a given node.

(2) Certain operations like concatenation and splitting becomes more efficient in circular list.

25

DATA STRUCTURES-BCS304

MODULE 2

[3 [1a] F——l2 [8 [g——2 [o |

|‘7 last

Circular representation of 3x'#+2x3+1

e We can free the nodes that are no longer used and can reuse the nodes later by maintain

a list called freed. When new node is needed we examine the this list. If the list is not

empty then we may use one of the nodes. Only when list is empty we need to create a

node using malloc.

e Let avial be a variable of type polyPointer that points to first node in our list of freed

nodes. We call this list as available space list or avail list.

e [Initially set avail to NULL.instead of using malloc or free we use getNode and retNode.

e FErase circular list in a fxed amount of time independent of number of nodes in list using

cerasc

polyPointer getNode (void)
{
polyPointer node;
if (avail)
{
node=avail;
avail=avail->1link;
}
else
malloc (node, sizeof (*node));
return node

Program:getNode function

void retNode (polyPointer node)
{

node->link=avail;
avail=node;

Program: retNode function

26

DATA STRUCTURES-BCS304 MODULE 2

void cerase (polyPointer *ptr)

{

if (*ptr)

{
temp= (*ptr)->1ink;
(*ptr) ->link=avail;
avail=temp;
*ptr=NULL;

Program:Erasing a circular list

header
(a) Zero polynomial

header

314 NNy 1 L[]]

O30+ 2x8 4l

27

DATA STRUCTURES-BCS304
MODULE 2

/”#ffdﬂ-d__ﬁ_ d i
lypolﬂter cpadd (polyPointer a, polyPointer b)

0 ; .

{ffp?lYnom;al: a and b are singly linked circular lists
with @ eader node. Return a polynomial which i

the sum of a and b */ =

olyPointer startdA, c, lastC;

done = FALSE;

int sum,

starth = ai /* record start of a */

a= a—%l%NkF /* skip header node for a and b*/
h = b"'}llnk;

c = getNode(); /* get a header node for sum */
c—rexpon = -1; lastC = cj

do |

switch (COMPARE (a—expon, b—expon)) |
case —-1: /* a—expon < b—expon */
attach{brecoef,b—&expon,&lastC};

b = b—link;

break;
/* a—expon = b—rexpon 1

case 0:
done = TRUE;

if (startA == a)

else |
sum =
if (sum)
a3 = a—-}liﬂk;

a—coef + b—coef;
attach{sum,ar+expon,
b = b—1link;

&lastCly

]

break;

/* a—yexpon
£, a—¥eXpon,

5 p=—rexpon *

case 1:
glastC)

attach{ar+coe
& & a—1link;
)
} while (!done);
lastc—link = c;
feturn ¢;

28

) Akshaya Institute of Technology

g\% gg %g Approved by AICTE, New Delhi, Affiliated to VTU, Belgaum, Recognized by Govt. of
e A KS(HA\YJC} N Karnataka,
[e e Obalapura Post, Lingapura, Koratagere Road, Tumkur - 572 106, Karnataka

=])

« TUMKUR =

EXHAUSTIVE QUESTION BANK

Batch 2022 - 2026
Year/Semester/Section | 2nrd/3rd/

Course Code -Title BCS304 - Data Structures andApplications

Module No. -Title Linked Lists, Queues

Name of the Course Mrs.Shivaranjani S.S | Designation Asst.
In charge Prof.

QNo. Question COs RBT
1 Define queue. List the different types of queues. State the limitation of CO2 L1
ordinary queue and explain how do you overcome this limitation with an
example.

2 Describe the various operations on circular queues using arrays and CO2 L1
dynamic arrays.
3 Write a C function CQInsert() and CQDelete() operations on CO2 L1
circular queue.
4 Explain operations on Multiple Stacks and queues with an example. CO2 L1

5 Define linked list. List and describe the different types of linked lists CO3 L2
with a neat diagram
6 Differentiate between singly linked list and doubly linked list CO3 L2

7 Develop C functions to implement different operations of stacks and CO3 L2
queues using linked lists.
8 Write the function for the following operations on singly linked list: CO3 L2
1) Insert_front().
2) Insert_rear().
3) Delete front().
4) Delete_rear().
5) Display()

9 Write a C function to add 2 polynomials using linked lists. CO3 L3

10 Write the node structure for linked representation of polynomial. Write CO3 L3
the function to add 2 polynomials and represent it with linked list.

¢ST 2009 .

angBEREs,

~‘.-<§g>._ A Akshaya Institute of Technology

k Akshays Fdueatian ‘rulmy\"'"

SE E: Approved by AICTE, New Delhi, Affiliated to VTU, Belgaum, Recognized by Govt. of
‘:ﬂ’ f}}ﬁ%ﬁA‘{é NA Karnataka,
| —.’,“""’ e \\ g Obalapura Post, Lingapura, Koratagere Road, Tumkur - 572 106, Karnataka
! Tunkue &
11 Write a program to add 2 polynomials using linked list. Also represent given

polynomial using circular singly linked list :

P(xX.y.2)=6x>y? 72 Ay?z? + 3xyrt IxyIz-2xyz>.

12. Explain how do you represent Chains using Linked lists. CO3 L3

Course In charge DAEC HOD

