

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

 DATA STRUCTURE AND ITS APPLICATION

 (BCS304)

 Prepared by:

 Mrs.Shivaranjani S.S

 Assistant Professor

 Department of AI&DS

 AIT, Tumkur

MODULE 2 DATA STRUCTURES-BCS304

1

MODULE 2

QUEUES: Queues, Circular Queues, Using Dynamic Arrays, Multiple Stacks and queues.

LINKED LISTS : Singly Linked, Lists and Chains, Representing Chains in C, Linked Stacks

and Queues, Polynomials.

QUEUES ABSTRACT DATA TYPE

DEFINITION

• “A queue is an ordered list in which insertions (additions, pushes) and deletions (removals and

pops) take place at different ends.”

• The end at which new elements are added is called the rear, and that from which old elements

are deleted is called the front.

• Given a queue Q = (a0, a1,……… an-1) , a0, is the front element an-1 is the rear element, ai+1 is

behind ai 0< =i < n-1.

If the elements are inserted A, B, C, D and E in this order, then A is the first element deleted

from the queue. Since the first element inserted into a queue is the first element removed,

queues are also known as First-In-First-Out (FIFO) lists.

QUEUE REPRESENTATION USING ARRAY

• Queues may be represented by one-way lists or linear arrays.

• Queues will be maintained by a linear array QUEUE and two pointer variables: FRONT-

containing the location of the front element of the queue

• REAR-containing the location of the rear element of the queue.

• The condition FRONT = NULL will indicate that the queue is empty.

• Figure indicates the way elements will be deleted from the queue and the way new elements

will be added to the queue.

• Whenever an element is deleted from the queue, the value of FRONT is increased by 1; this

can be implemented by the assignment FRONT := FRONT + 1

• When an element is added to the queue, the value of REAR is increased by 1; this can be

implemented by the assignment REAR := REAR + 1

MODULE 2 DATA STRUCTURES-BCS304

2

MODULE 2 DATA STRUCTURES-BCS304

3

Implementation of the queue operations as follows.

1. Queue Create

Queue CreateQ(maxQueueSize) ::=

#define MAX_QUEUE_SIZE 100 /* maximum queue size */

typedef struct

{

int key;

/* other fields */

} element;

element queue[MAX_QUEUE_SIZE];

int rear = -1;

int front = -1;

2. Boolean IsEmptyQ(queue) ::= front ==rear

3. Boolean IsFullQ(queue) ::= rear == MAX_QUEUE_SIZE-1

In the queue, two variables are used which are front and rear. The queue increments rear in

addq() and front in delete(). The function calls would be addq (item); and item =delete();

4. addq(item)

void addq(int *rear, element item)

{

// add an item to the queue

if (rear == MAX_QUEUE_SIZE-1)

{ queue_Full();

return;

}

queue [++rear] = item;

}

Program: Add to a queue

MODULE 2 DATA STRUCTURES-BCS304

4

6. queueFull()

The queueFull function which prints an error message and terminates execution

void queueFull()

{

fprintf(stderr, "Queue is full, cannot add element");

exit(EXIT_FAILURE);

}

Example: Job scheduling

Queues are frequently used in creation of a job queue by an operating system. If the

operating system does not use priorities, then the jobs are processed in the order

they enter the system.

Figure illustrates how an operating system process jobs using a sequential

representation for its queue.

5. deleteq()

element deleteq(int *front, int *rear)

{ /* remove element at the front of the queue */

if (front == rear)

return queue_Empty(); /* return an error key

return queue[++front];

}

Program: Delete from a queue

MODULE 2 DATA STRUCTURES-BCS304

5

Drawback of Queue

When item enters and deleted from the queue, the queue gradually shifts to the right as

shown in figure.

In this above situation, when we try to insert another item, which shows that the queue is

full . This means that the rear index equals to MAX_QUEUE_SIZE -1. But even if the

space is available at the front end, rear insertion cannot be done.

Overcome of Drawback using different methods

Method 1:

• When an item is deleted from the queue, move the entire queue to the left so that the

first element is again at queue[0] and front is at -1. It should also recalculate rear so

that it is correctly positioned.

• Shifting an array is very time-consuming when there are many elements in queue &

queueFull has worst case complexity of O(MAX_QUEUE_SIZE)

MODULE 2 DATA STRUCTURES-BCS304

6

• It is “The queue which wrap around the end of the array.” The array positions are

arranged in a circle as shown in figure.

• In this convention the variable front is changed. front variable points one position

counterclockwise from the location of the front element in the queue. The

convention for rear is unchanged.

Method 2:

Circular Queue

• It is “The queue which wrap around the end of the array.” The array positions are

arranged in a circle.

• In this convention the variable front is changed. front variable points one position

counterclockwise from the location of the front element in the queue. The

convention for rear is unchanged.

CIRCULAR QUEUES

MODULE 2 DATA STRUCTURES-BCS304

7

if (rear = = MAX_QUEUE_SIZE-1)

rear = 0;

else rear++;

Implementation of Circular Queue Operations

• When the array is viewed as a circle, each array position has a next and a previous

position. The position next to MAX-QUEUE-SIZE -1 is 0, and the position that

precedes 0 is MAX-QUEUE-SIZE -1.

• When the queue rear is at MAX_QUEUE_SIZE-1, the next element is inserted at

position 0.

• In circular queue, the variables front and rear are moved from their current

position to the next position in clockwise direction. This may be done using code

Addition & Deletion

• To add an element, increment rear one position clockwise and insert at the new

position. Here the MAX_QUEUE_SIZE is 8 and if all 8 elements are added into

queue and that can be represented in below figure (a).

• To delete an element, increment front one position clockwise. The element A is

deleted from queue and if we perform 6 deletions from the queue of Figure (b) in

this fashion, then queue becomes empty and that front =rear.

• If the element I is added into the queue as in figure (c), then rear needs to

increment by 1 and the value of rear is 8. Since queue is circular, the next

position should be 0 instead of 8.

This can be done by using the modulus operator, which computes remainders.

MODULE 2 DATA STRUCTURES-BCS304

8

void addq(element item)

element deleteq()

{

{ /* add an item to the queue */

rear = (rear +1) % MAX_QUEUE_SIZE;

if (front == rear)

queueFull(rear); /* print error and exit */

queue [rear] = item;

}

Program: Add to a circular queue

/* remove front element from the queue */

Program: Delete from a circular queue

element item;

if (front == rear)

return queueEmpty(); /* return an error key */

front = (front+1)% MAX_QUEUE_SIZE;

return queue[front];
}

MODULE 2 DATA STRUCTURES-BCS304

9

CIRCULAR QUEUES USING DYNAMIC ARRAYS

• A dynamically allocated a

• rray is used to hold the queue elements. Let capacity be the number of positions in

the array queue.

• To add an element to a full queue, first increase the size of this array using a

function realloc.

Consider the full queue of figure (a). This figure shows a queue with seven elements in

an array whose capacity is 8. A circular queue is flatten out the array as in Figure (b).

Figure (c) shows the array after array doubling by relloc

To get a proper circular queue configuration, slide the elements in the right segment (i.e.,

elements A and B) to the right end of the array as in figure (d)

MODULE 2 DATA STRUCTURES-BCS304

10

void addq(element item)

void queueFull()

{ /* add an item to the queue

rear = (rear +1) % capacity;

if(front == rear)

queueFull(); /* double capacity */

queue[rear] = item;

}

{ /* allocate an array with twice the capacity */

element *newQueue;

MALLOC (newQueue, 2 * capacity * sizeof(* queue));

/* copy from queue to newQueue */

int start = (front +) % capacity;

if (start < 2) /* no wrap around */

copy(queue+start, queue+start+capacity-1,newQueue);

else

{ /* queue wrap around */

To obtain the configuration as shown in figure (e), follow the steps

1) Create a new array newQueue of twice the capacity.

2) Copy the second segment (i.e., the elements queue [front +1] through queue

[capacity-1]) to positions in newQueue beginning at 0.

3) Copy the first segment (i.e., the elements queue [0] through queue [rear]) to

positions in newQueue beginning at capacity – front – 1.

Below program gives the code to add to a circular queue using a dynamically allocated array.

Below program obtains the configuration of figure (e) and gives the code for queueFull.

The function copy (a,b,c) copies elements from locations a through b-1 to locations

beginning at c.

MODULE 2 DATA STRUCTURES-BCS304

11

copy(queue, queue+capacity, newQueue);

copy(queue, queue+rear+1, newQueue+capacity-start);

}

/* switch to newQueue*/

front = 2*capacity – 1;

rear = capacity – 2;

capacity * =2;

free(queue);

queue= newQueue;

The declarations are:

#define MEMORY_SIZE 100

#define MAX_STACKS 10

element memory[MEMORY_SIZE];

int top [MAX_STACKS];

int boundary [MAX_STACKS] ;

int n;

Program: queueFull

/* size of memory */

/* max number of stacks plus 1 */

/* global memory declaration */

/*number of stacks entered by the user */

MULTIPLE STACKS AND QUEUES

• In multiple stacks, we examine only sequential mappings of stacks into an array.

The array is one dimensional which is memory[MEMORY_SIZE]. Assume n

stacks are needed, and then divide the available memory into n segments. The array

is divided in proportion if the expected sizes of the various stacks are known.

Otherwise, divide the memory into equal segments.

• Assume that i refers to the stack number of one of the n stacks. To establish this

stack, create indices for both the bottom and top positions of this stack.

boundary[i] points to the position immediately to the left of the bottom element of

stack i, top[i] points to the top element. Stack i is empty iff boundary[i]=top[i].

}

MODULE 2 DATA STRUCTURES-BCS304

12

void push(int i, element item)

{ /* add an item to the ith stack */

if (top[i] == boundary[i+l])

stackFull(i);

memory[++top[i]] =

item;

}

Program: Add an item to the ith stack

Figure: Initial configuration for n stacks in memory [m].

In the figure, n is the number of stacks entered by the user, n < MAX_STACKS, and

m =MEMORY_SIZE. Stack i grow from boundary[i] + 1 to boundary [i + 1] before it is

full. A boundary for the last stack is needed, so set boundary [n] to MEMORY_SIZE-1.

Implementation of the add operation

To divide the array into roughly equal segments

top[0] = boundary[0] = -1;

for (j= 1;j<n; j++)

top[j] = boundary[j] = (MEMORY_SIZE / n) * j;

boundary[n] = MEMORY_SIZE - 1;

MODULE 2 DATA STRUCTURES-BCS304

13

element pop(int i)

{ /* remove top element from the ith stack */ if

(top[i] == boundary[i])

return stackEmpty(i);

return memory[top[i]--];

}

memory, not that the entire memory is full. But still there may be a lot of unused space

between other stacks in array memory as shown in Figure.

Therefore, create an error recovery function called stackFull , which determines if there is any

free space in memory. If there is space available, it should shift the stacks so that space is

allocated to the full stack.

Implementation of the delete operation

The top[i] == boundary[i+1] condition in push implies only that a particular stack ran out of

MODULE 2 DATA STRUCTURES-BCS304

14

LINKED LIST

DEFINITION

A linked list, or one-way list, is a linear collection of data elements, called nodes, where

the linear order is given by means of pointers. That is, each node is divided into two parts:

• The first part contains the information of the element, and

• The second part, called the link field or nextpointer field, contains the address of

the next node in the list.

A linked list is a dynamic data structure where each element (called a node) is made up of

two items - the data and a reference (or pointer) which points to the next node. A linked list is

a collection of nodes where each node is connected to the next node through a pointer.

In the above figure each node is pictured with two parts.

➢ The left part represents the information part of the node, which may contain an entire

record of data items.

➢ The right part represents the link field of the node

➢ An arrow drawn from a node to the next node in the list.

➢ The pointer of the last node contains a special value, called the NULL.

A pointer variable called first which contains the address of the first node. A special case is the

list that has no nodes; such a list is called the null list or empty list and is denoted by the null

pointer in the variable first.

MODULE 2 DATA STRUCTURES-BCS304

15

3. The subscripts of the arrays DATA and LINK will be positive, so choose NULL =

0, unless otherwise stated.

The following examples of linked lists indicate that the nodes of a list need not occupy

adjacent elements in the arrays DATA and LINK, and that more than one list may be

maintained in the same linear arrays DATA and LINK. However, each list must have its

own pointer variable giving the location of its first node.

DATA LINK

REPRESENTATION OF LINKED LISTS IN MEMORY

Let LIST be a linked list. Then LIST will be maintained in memory as follows.

1. LIST requires two linear arrays such as DATA and LINK-such that DATA[K] and

LINK[K] contains the information part and the nextpointer field of a node of LIST.

2. LIST also requires a variable name such as START which contains the location of

the beginning of the list, and a nextpointer sentinel denoted by NULL-which

indicates the end of the list.

Insert GAT to data[5]

MODULE 2 DATA STRUCTURES-BCS304

16

typedef struct listNode *listPointer

typedef struct

{

char data[4];

listPointer list;

} listNode;

listPointer first = NULL

MALLOC (first, sizeof(*first));

strcpy(first→ data,”BAT”);

first→ link = NULL

Insert node GAT into list

REPRESENTING CHAIN IN C

The following capabilities are needed to make linked representation

1. A mechanism for defining a node’s structure, that is, the field it contains. So self-

referential structures can be used

2. A way to create new nodes, so MALLOC functions can do this operation

3. A way to remove nodes that no longer needed. The FREE function handles this

operation.

1. Defining a node structure

Create a New Empty list

To create a New Node

To place the data into NODE

MODULE 2 DATA STRUCTURES-BCS304

17

listPointer create2()

{ /*create a linked list with two nodes*/

listPointer first,second;

MALLOC(first,sizeof(*first));

MALLOC(second,sizeof(*second));

Second->link=NULL;

Second->data=20;

First->data=10;

First->link=second;

Return first

Program: create two node list

}

2. Two-node linked list:

3. List insertion:

void insert(listPointer *first, listPointer x)

{

listPointer temp;

malloc(temp,sizeof(*temp);

temp->data=50;

if(*first)

{

temp->link;

x->link;

}

else

{

temp->link;

*first->temp;

}

}

MODULE 2 DATA STRUCTURES-BCS304

18

void delete(listPointer *first, listPointer trail, listPointer x)

{

if(trail)

trail->link=x->link;

else

*first=(*first)->link;

free(x);

}

Deletion from list

• Deletion depends on the location of the nodes.

• We have three pointers:

o first points to start of the list,

o x points to the node that we have to delete

o trail points to the node the precedes to x.

5. Printing out a list

void printList(listPointer first)

{

printf(“The list contains”);

for(;first;first=first->link)

Printf(“%4d”,first->data);

printf(“\n”);

}

Printing list

4. Deletion from the list:

Inserting into an empty or nonempty list

MODULE 2 DATA STRUCTURES-BCS304

19

#define MAX_STACKS 10 /* maximum number of stacks */

typedef struct {

int key;

/* other fields */

}element;

typedef struct stack *stackPointer;

typedef struct {

element data; stackPointer

link;

} stack;

stackPointer top[MAX_STACKS];

LINKED STACKS AND QUEUES

The below figure shows stacks and queues using linked list. Nodes can easily add or delete a node from the

top of the stack. Nodes can easily add a node to the rear of the queue and add or delete a node at the front

Linked Stack

The representation of n ≤ MAX_STACKS

The initial condition for the stacks is:

top[i] = NULL, 0 ≤ i < MAX_STACKS

The boundary condition is:

top [i] = NULL iff the ith stack is empty

MODULE 2 DATA STRUCTURES-BCS304

20

element pop(int i)

{ /* remove top element from the ith stack */

stackPointer temp = top[i];

element item;

if (! temp)

return stackEmpty();

item = temp→data;

top[i] = temp→link;

free (temp) ;

return item;

variable top is then changed to point to temp. A typical function call to add an element to the ith stack would

be push (i,item).

Function pop returns the top element and changes top to point to the address contained in

its link field. The removed node is then returned to system memory. A typical function

call to delete an element from the ith stack would be item = pop (i);

void push(int i, element item)

{/* add item to the ith stack */

stackPointer temp;

MALLOC(temp, sizeof(*temp));

temp→data = item;

temp→link = top[i];

top[i] = temp;

}

Add to a linked stack

}

Delete from a linked stack

Functions push and pop add and delete items to/from a stack.

Function push creates a new node, temp, and places item in the data field and top in the link field. The

MODULE 2 DATA STRUCTURES-BCS304

21

void addq(i, item)

Program: Add to the rear of a linked queue

#define MAX-QUEUES 10 /* maximum number of queues */

Typedef struct queue *queuePointer;

typedef struct {

element data;

queuePointer link;

} queue;

queuePointer front[MAX_QUEUES], rear[MAX_QUEUES];

{

}

/* add item to the rear of queue i */

queuePointer temp;

MALLOC(temp, sizeof(*temp));

temp→data = item;

temp→link = NULL;

if (front[i])

rear[i] →link = temp;

else

front[i] = temp;

rear[i] = temp;

Linked Queue

The representation of m ≤ MAX_QUEUES queues,

The initial condition for the queues is:

front[i] = NULL, 0 ≤ i < MAX_QUEUES

The boundary condition is:

front[i] = NULL iff the ith queue is empty

Functions addq and deleteq implement the add and delete operations for multiple

queues.

Function addq is more complex than push because we must check for an empty queue. If the

queue is empty, then change front to point to the new node; otherwise change rear's link

field to point to the new node. In either case, we then change rear to point to the new node.

element deleteq(int i)

{/* delete an element from queue i */

queuePointer temp = front[i];

element item;

if (! temp)

return queueEmpty();

item = temp→data;

front[i]= temp→link;

free (temp) ;

return item;

}

Program: Delete from the front of a linked queue

MODULE 2 DATA STRUCTURES-BCS304

22

typedef struct polyNode

*polyPointer; typedef struct {

int coef; int expon;

polyPointer link;

} polyNode;

polyPointer a,b;

Function deleteq is similar to pop since nodes are removing that is currently at the start

of the list. Typical function calls would be addq (i, item); and item = deleteq (i);

APPLICATIONS OF LINKED LISTS – POLYNOMIALS

1. Representation of the polynomial:

where the ai are nonzero coefficients and the ei are nonnegative integer exponents such that

em-l > em-2 > ... > e1 > e0 ≥ 0.

Present each term as a node containing coefficient and exponent fields, as well as a pointer

tothe next term.

Assuming that the coefficients are integers, the type declarations are:

We draw polynomial nodes as:

coef expon link

MODULE 2 DATA STRUCTURES-BCS304

23

2. Adding Polynomials

To add two polynomials, examine their terms starting at the nodes pointed to by a and b.

• If the exponents of the two terms are equal, then add the two coefficients and create a new

term for the result, and also move the pointers to the next nodes in a and b.

• If the exponent of the current term in a is less than the exponent of the current term inb,

then create a duplicate term of b, attach this term to the result, called c, and advance the

pointer to the next term in b.

• If the exponent of the current term in b is less than the exponent of the current term ina,

then create a duplicate term of a, attach this term to the result, called c, and advance the

pointer to the next term in a

Below figure illustrates this process for the polynomials addition.

MODULE 2 DATA STRUCTURES-BCS304

24

The complete addition algorithm is specified by padd()

MODULE 2 DATA STRUCTURES-BCS304

25

Void erase(polyPointer *ptr)

{

polyPointer temp;

while(*ptr)

{

Temp=*ptr;

*ptr=(*ptr)->link;

Free(temp)

}

}

Program:erasing polynomial

Analysis of padd:

To determine the computing time of padd, first determine which operations contribute to the

cost. For this algorithm, there are three cost measures:

(l) Coefficient additions

(2) Exponent comparisons

(3) Creation of new nodes for c

The maximum number of executions of any statement in padd is bounded above by m + n.

Therefore, the computing time is O(m+n). This means that if we implement and run the

algorithm on a computer, the time it takes will be C1m + C2n + C3, where C1, C2, C3 are

constants. Since any algorithm that adds two polynomials must look at each nonzero term at

least once, padd is optimal to within a constant factor.

3. Erasing a Polynomial

4. Circular representation of polynomials

Circular linked list are one they of liner linked list. In which the link fields of last node of the

list contains the address of the first node of the list instead of contains a null pointer.

Advantages:- Circular list are frequency used instead of ordinary linked list because in circular

list all nodes contain a valid address.

The important feature of circular list is as follows.

(1) In a circular list every node is accessible from a given node.

(2) Certain operations like concatenation and splitting becomes more efficient in circular list.

MODULE 2 DATA STRUCTURES-BCS304

26

polyPointer getNode(void)

{

polyPointer node;

if(avail)

{

node=avail;

avail=avail->link;

}

else

malloc(node, sizeof(*node));

return node

}

Program:getNode function

a list called freed. When new node is needed we examine the this list. If the list is not

empty then we may use one of the nodes. Only when list is empty we need to create a

node using malloc.

• Let avial be a variable of type polyPointer that points to first node in our list of freed

nodes. We call this list as available space list or avail list.

• Initially set avail to NULL.instead of using malloc or free we use getNode and retNode.

• Erase circular list in a fxed amount of time independent of number of nodes in list using

cerase

void retNode(polyPointer node)

{

node->link=avail;

avail=node;

}

Program: retNode function

• We can free the nodes that are no longer used and can reuse the nodes later by maintain

Circular representation of 3x14+2x8+1

MODULE 2 DATA STRUCTURES-BCS304

27

void cerase(polyPointer *ptr)

{

if(*ptr)

{

temp=(*ptr)->link;

(*ptr)->link=avail;

avail=temp;

*ptr=NULL;

}

}

Program:Erasing a circular list

MODULE 2 DATA STRUCTURES-BCS304

28

Akshaya Institute of Technology
Approved by AICTE, New Delhi, Affiliated to VTU, Belgaum, Recognized by Govt. of

Karnataka,

Obalapura Post, Lingapura, Koratagere Road, Tumkur - 572 106, Karnataka

EXHAUSTIVE QUESTION BANK

Batch 2022 - 2026

Year/Semester/Section 2nd/3rd/

Course Code -Title
BCS304 – Data Structures andApplications

Module No. -Title Linked Lists, Queues

Name of the Course
In charge

Mrs.Shivaranjani S.S Designation
Asst.
Prof.

QNo. Question COs RBT

1 Define queue. List the different types of queues. State the limitation of

ordinary queue and explain how do you overcome this limitation with an
example.

CO2 L1

2 Describe the various operations on circular queues using arrays and

dynamic arrays.

CO2 L1

3 Write a C function CQInsert() and CQDelete() operations on

circular queue.

CO2 L1

4 Explain operations on Multiple Stacks and queues with an example. CO2 L1

5 Define linked list. List and describe the different types of linked lists
with a neat diagram

CO3 L2

6 Differentiate between singly linked list and doubly linked list CO3 L2

7 Develop C functions to implement different operations of stacks and

queues using linked lists.

CO3 L2

8 Write the function for the following operations on singly linked list:

1) Insert_front().

2) Insert_rear().

3) Delete_front().
4) Delete_rear().
5) Display()

CO3 L2

9 Write a C function to add 2 polynomials using linked lists. CO3 L3

10 Write the node structure for linked representation of polynomial. Write

the function to add 2 polynomials and represent it with linked list.

CO3 L3

Akshaya Institute of Technology
Approved by AICTE, New Delhi, Affiliated to VTU, Belgaum, Recognized by Govt. of

Karnataka,

Obalapura Post, Lingapura, Koratagere Road, Tumkur - 572 106, Karnataka

11 Write a program to add 2 polynomials using linked list. Also represent given

polynomial using circular singly linked list :

CO3 L3

12. Explain how do you represent Chains using Linked lists. CO3 L3

Course In charge DAEC HOD

