

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

 DATA STRUCTURE AND ITS APPLICATION

 (BCS304)

 Prepared by:

 Mrs.Shivaranjani S.S

 Assistant Professor

 Department of AI&DS

 AIT, Tumkur

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 1 ASSISTANT PROFESSOR AI&DS

MODULE 1

INTRODUCTION TO DATA STRUCTURES: Data Structures, Classifications (Primitive

& Non-Primitive), Data structure Operations Review of pointers and dynamic Memory

Allocation

 ARRAYS and STRUCTURES: Arrays, Dynamic Allocated Arrays, Structures and Unions,

Polynomials, Sparse Matrices, representation of Multidimensional Arrays, Strings

STACKS: Stacks, Stacks Using Dynamic Arrays, Evaluation and conversion of Expressions

DATA STRUCTURE

Data structure is a representation of the logical relationships existing between individual

elements of data. A data structure is a way of organizing all data items that considers not only

the elements stored but also their relationship to each other.

The logical or mathematical model of a particular organization of data is called a data

structure.

The choice of a particular data model depends on the two considerations:

1. It must be rich enough in structure to mirror the actual relationships of the data in the

real world.

2. The structure should be simple enough that one can effectively process the data

whenever necessary.

BASIC TERMINOLOGY

Elementary Data Organization

Data: Data are simply values or sets of values.

Data items: Data items refers to a single unit of values. Data items that are divided into

subitems are called Group items. Ex: An Employee Name may be divided into three subitems-

first name, middle name, and last name. Data items that are not able to divide into sub-items

are called Elementary items. Ex: SSN

Entity: An entity is something that has certain attributes or properties which may be assigned

values. The values may be either numeric or non-numeric. Ex: Attributes- Names, Age, Sex,

SSN Values- Rohland Gail, 34, F, 134-34-5533 Entities with similar attributes form an entity

set. Each attribute of an entity set has a range of values, the set of all possible values that could

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 2 ASSISTANT PROFESSOR AI&DS

be assigned to the particular attribute. The term “information” is sometimes used for data with

given attributes, of, in other words meaningful or processed data.

Field: is a single elementary unit of information representing an attribute of an entity. Record

is the collection of field values of a given entity.

File: is the collection of records of the entities in a given entity set.

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 3 ASSISTANT PROFESSOR AI&DS

Primitive Data Structures

These are basic data structures and are directly operated upon by the machine instructions.

These data types consists of characters that cannot be divided and hence they also called simple

data types.

Each record in a file may contain many field items but the value in a certain field may

uniquely determine the record in the file. Such a field K is called a primary key and the

values k1, k2, ….. in such a field are called keys or key values.

Records may also be classified according to length.

A file can have fixed - length records or variable - length records.

• In fixed - length records, all the records contain the same data items with the same amount of

space assigned to each data item.

• In variable - length records file records may contain different lengths. Example: Student

records have variable lengths, since different students take different numbers of courses.

Variable - length records have a minimum and a maximum length. The above organization of

data into fields, records and files may not be complex enough to maintain and efficiently

process certain collections of data. For this reason, data are also organized into more complex

types of structures.

CLASSIFICATION OF DATA STRUCTURES

Data Structures can be divided into two categories,

i) Primitive Data Structures

ii) Non - Primitive Data Structures

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 4 ASSISTANT PROFESSOR AI&DS

Example: Integers, Floating Point Numbers, Characters and Pointers etc.

Non-Primitive Data Structures

These are derived from the primitive data structures. The non-primitive data structures

emphasizeon structuring of a group of homogeneous or heterogeneous data items.

Example: Arrays, Lists and Files, Graphs, trees etc.

Based on the structure and arrangement of data, non-primitive data structures is

furtherclassified into 1. Linear Data Structure

2. Non-linear Data Structure

1. Linear Data Structure:

A data structure is said to be linear if its elements form a sequence or a linear list. There are

basically two ways of representing such linear structure in memory.

1. One way is to have the linear relationships between the elements represented by means

of sequential memory location. These linear structures are called arrays.

2. The other way is to have the linear relationship between the elements represented by

means of pointers or links. These linear structures are called linked lists.

The common examples of linear data structure are Arrays, Queues, Stacks, Linked lists

2. Non-linear Data Structure:

A data structure is said to be non-linear if the data are not arranged in sequence or a linear. The

insertion and deletion of data is not possible in linear fashion. This structure is mainly used to

represent data containing a hierarchical relationship between elements. Trees and graphs are

the examples of non-linear data structure.

OPERATIONS ON DATA STRUCTURES

The commonly used operations on data structures are as follows,

1. Create: The Create operation results in reserving memory for the program elements.

The creation of data structures may take place either during compile time or during run

time.

2. Destroy: The Destroy operation destroys the memory space allocated for the specified

data structure.

3. Selection: The Selection operation deals with accessing a particular data within a data

structure.

4. Updating: The Update operation updates or modifies the data in the data structure.

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 5 ASSISTANT PROFESSOR AI&DS

5. Searching: The Searching operation finds the presence of the desired data item in the

list of data items.

6. Sorting: Sorting is the process of arranging all the data items in the data structure in a

particular order, say for example, either in ascending order or in descending order.

7. Merging: Merging is a process of combing the data items of two different sorted list

into a single list.

REVIEW OF POINTERS AND DYNAMIC MEMORY ALLOCATION

Pointers to data significantly improve performance for repetitive operations such as traversing

strings, lookup tables, control tables and tree structures. In particular, it is often much cheaper

in time and space to copy and dereference pointers than it is to copy and access the data to

which the pointers point. Pointers are also used to hold the addresses of entry points for called

subroutines in procedural programming and for run-time linking to dynamic link libraries

(DLLs).

Pointer: A pointer is a special variable which contains address of a memory location. Using

this pointer, the data can be accessed. For example, assume that a program contains four

occurrences of a constant 3.1459. During the compilation process, four copies of 3.1459 can

be created as shown below:

 However, it is more efficient to use one copy of 3.1459 and three pointers referencing a single

copy, since less space is required for a pointer when compared to floating point number. This

can be represented pictorially as shown below:

General form of pointer declaration is –

type* name;

where type represent the type to which pointer thinks it is pointing to.

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 6 ASSISTANT PROFESSOR AI&DS

Pointers to machine defined as well as user-defined types can be made Pointer

Intialization:

variable_type *pointer_name = 0; or variable_type

*pointer_name = NULL; char *pointer_name = "string

value here";

#include void main()

{

 int i,*pi;

 pi=(int*)malloc(sizeof(int));

 *pi=1024;

 printf("an integer =%d",pi);

free(pi);

}

Prg: Allocation and deallocation of memory

DYNAMIC MEMORY ALLOCATION

This is process of allocating memory - space during execution - time (or run - time).

• This is used if there is an unpredictable storage requirement.

 • Memory - allocation is done on a heap.

• Memory management functions include:

→ malloc (memory allocate)

→ calloc (contiguous memory allocate)

 → realloc (resize memory)

→ free (deallocate memory)

• malloc function is used to allocate required amount of memory - space during run - time.

• If memory allocation succeeds, then address of first byte of allocated space is returned. If

memory allocation fails, then NULL is returned.

• free() function is used to deallocate(or free) an area of memory previously allocated by

malloc() or calloc().

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 7 ASSISTANT PROFESSOR AI&DS

• If we frequently allocate the memory space, then it is better to define a macro as shown below:

#define MALLOC(p,s)

if(!((p)==malloc(s)))

 } printf("insufficient memory");

exit(0);

 }

• Now memory can be initialized using following:

MALLOC(pi,sizeof(int));

MALLOC(pf,sizeof(float))

 DANGLING REFERENCE

 • Whenever all pointers to a dynamically allocated area of storage are lost, the storage is lost

to the program. This is called a dangling reference.

POINTERS CAN BE DANGEROUS

1) Set all pointers to NULL when they are not actually pointing to an object. This makes

sure that you will not attempt to access an area of memory that is either

 → out of range of your program or

 → that does not contain a pointer reference to a legitimate object 2)

Use explicit type casts when converting between pointer types.

 pi=malloc(sizeof(int)); //assign to pi a pointer to int

pf=(float*)pi; //casts an ‘int’ pointer to a ‘float’ pointer

3) Pointers have same size as data type 'int'. Since int is the default type specifier, some

programmers omit return type when defining a function. The return type defaults to

‘int’ which can later be interpreted as a pointer. Therefore, programmer has to define

explicit return types for functions.

void swap(int *p,int *q) //both parameters are pointers to ints

{ int temp=*p; //declares temp as an int and assigns to it the contents
 of what p points to

 *p=*q; //stores what q points to into the location where p
 points

 *q=temp;
//places the contents temp in location pointed to by q

}

Prg: Swap Function

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 8 ASSISTANT PROFESSOR AI&DS

ALGORITHM SPECIFICATION

An algorithm is a finite set of instructions that, if followed, accomplishes a particular task. In

addition, all algorithms must satisfy the following criteria:

1. Input: There are zero or more quantities that are externally supplied.

2. Output: At least one quantity is produced.

3. Definiteness: Each instruction is clear and unambiguous

4. Finiteness: If we trace out the instructions of an algorithm, then for all cases, the

algorithm terminates after a finite number of steps.

5. Effectiveness: Every instruction must be basic enough to be carried out, in principle,

by a person using only pencil and paper. It is not enough that each operation be definite

as in (3); it also must be feasible.

Algorithm can be described in following ways:

1) We can use natural language consisting of some mathematical equations.

2) We can use graphic representations such as flowcharts.

3) We can use combination of C and English language constructs.

• Algorithm 1.1: Selection sort algorithm.

for(i=0;i<n;i++)
{

Examine list[i] to list[n-1] and suppose that the

smallest integer is at list[min]; Interchange list[i]

and list[min];
}

Algorithm 1.2: finding the smallest integer.

assume that minimum is list[i]
compare current minimum with list[i+1] to list[n-1] and find smaller

number and make it the new minimum

• Algorithm 1.3: Binary search.

Assume that we have n > 1 distinct integers that are already sorted and stored in the array list.

That is, list[0]<= list[1]…list[n]

We must figure out if an integer searchnum is in this list.

 If it is we should return an index, i, such that list[i] = searchnum.

Ifsearchnum is not present, we should return -1.

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 9 ASSISTANT PROFESSOR AI&DS

Since the list is sorted we may use the following method to search for the value. Let left and

right, respectively, denote the left and right ends of the list to be searched. Initially, left = 0

and right = n-l. Let middle = (left+right)/2 be the middle position in the list. If we compare

list [middle] with searchnum, we obtain one of three results:

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 10 ASSISTANT PROFESSOR AI&DS

RECURSIVE ALGORITHMS

• A function calls itself either directly or indirectly during execution.

• Recursive-algorithms when compared to iterative-algorithms are normally compact and easy

to understand.

• Various types of recursion:

1) Direct recursion: where a recursive-function invokes itself.

2) Indirect recursion: A function which contains a call to another function which in turn

calls another function and so on and eventually calls the first function.

Procedure: FACTORIAL (FACT, N)

This procedure calculates N! and returns the value in the variable FACT.

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 11 ASSISTANT PROFESSOR AI&DS

If N = 0, then: Set FACT: = 1, and Return. Set

FACT: = 1. [Initializes FACT for loop.]

Repeat for K = 1 to N.

Set FACT: = K*FACT.

[End of loop.] Return.

Using recursive function: This is a recursive procedure, since it contains a call to itself

Procedure: FACTORIAL (FACT, N)

This procedure calculates N! and returns the value in the variable FACT.

If N = 0, then: Set FACT: = 1, and Return.

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 12 ASSISTANT PROFESSOR AI&DS

int binsearch(int list[], int searchnum, int left, int right)
{ // search list[0]<= list[1]<=...<=list[n-1] for searchnum int

middle; if (left<= right)
{ middle= (left+ right)/2;

switch(compare(list[middle], searchnum))
{ case -1:return binsearch(list, searchnum, middle+1, right);

case 0: return middle;
case 1: return binsearch(list, searchnum, left, middle- 1);
}

}
return -1;

}

int compare(int x, int y)
{ if (x< y) return -1; else if (x==

y) return 0; else return 1;
}

Recursive Implementation of Binary Search

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 13 ASSISTANT PROFESSOR AI&DS

3. PERMUTATIONS:

Given a set of n > 1 elements, print out all possible permutations of this set. For example, if the

set is (a, b. c), then the set of permutations is {(a, b, c), (a, c, b), (b, a, c), (b, c, d), (c, a, b),(c,

b, a)}.

It is easy to see that, given n elements, there are n! permutations. We can obtain a simple

algorithm for generating the permutations if we look at the set (a, b, c, d). We can construct the

set of permutations by printing:

1. a followed by all permutations of (b, c, d)

2. b followed by all permutations of (a, c, d)

3. c followed by all permutations of (a, b, d)

4. d followed by all permutations of (a , b, c)

 The clue to the recursive solution is the phrase "followed by all permutations." It implies

that we can solve the problem for a set with n elements if we have an algorithm that

works on n - 1 elements. We assume that list is a character array. Notice that it recursively

generates permuta tions until i = n. The initial function call is perm(list. 0, n - 1) ;

void perm(char *list,int i,int n)
{

int j,temp; if(i==n)
{

for(j=0;j<=n;j++) printf(“%c”, list[j]); printf(“
“);

}
else
{

for(j=i;j<=n;j++)
{
SWAP(list[i],list[j],temp); perm(list,i+1,n);
SWAP(list[i],list[j],temp);

}
}

}
Recursive permutations generator

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 14 ASSISTANT PROFESSOR AI&DS

4.TOWER OF HANOI

 Problem description

 Suppose three pegs, labeled A, Band C, are given, and suppose on peg A a finite number n of

disks with decreasing size are placed.

The objective of the game is to move the disks from peg A to peg C using peg B as an auxiliary.

The rules of the game are as follows:

1. Only one disk may be moved at a time. Only the top disk on any peg may be

moved to

any

other peg.

Solution: Observe that it consists of the following seven moves

1. Move top disk from peg A to peg C.

2. Move top disk from peg A to peg B.

3. Move top disk from peg C to peg B.

4. Move top disk from peg A to peg C.

5. Move top disk from peg B to peg A. 6. Move top disk from peg B to peg C.

2. At no time can a larger disk be placed on a smaller disk.

We write A→B to denote the instruction "Move top disk from peg A to peg B"

Example: Towers of Hanoi problem for n = 3.

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 15 ASSISTANT PROFESSOR AI&DS

7. Move top disk from peg A to peg C.

In other words,

n=3: A→C, A→B, C→B, A→C, B→A, B→C, A→C

For completeness, the solution to the Towers of Hanoi problem for n = 1

and n = 2 n=l: A→C n=2: A→B, A→C, B→C

The Towers of Hanoi problem for n > 1 disks may be reduced to the following subproblems:

 void Hanoi(int n, char x, char y, char

z)
{ if (n > 1)

{
Hanoi(n-1,x,z,y); printf("Move disk %d from

%c to %c.\n",n,x,z); Hanoi(n-1,y,x,z);
}

else
{ printf("Move disk %d from %c to %c.\n",n,x,z);
}

}

Recursive Implementation of tower of Hanoi

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 16 ASSISTANT PROFESSOR AI&DS

Example: Towers of Hanoi problem for n = 4

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 17 ASSISTANT PROFESSOR AI&DS

ARRAYS

• An Array is defined as, an ordered set of similar data items. All the data items of an

array are stored in consecutive memory locations.

• The data items of an array are of same type and each data items can be accessed using

the same name but different index value.

• An array is a set of pairs, such that each index has a value associated with it. It can be

called as corresponding or a mapping

Ex: <index, value>

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 18 ASSISTANT PROFESSOR AI&DS

 < 0 , 25 > list[0]=25

 < 1 , 15 > list[1]=15

 < 2 , 20 > list[2]=20

 < 3 , 17 > list[3]=17

 < 4 , 35 > list[4]=35

Here, list is the name of array. By using, list [0] to list [4] the data items in list can be accessed.

Structure Array is
objects: A set of pairs <index, value> where for each value of

index there is a value from the set item. Index is a finite

ordered set of one or more dimensions, for example,
{0, … , n-1} for one dimension,
{(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)} for

two dimensions, etc.

Functions:

for all A  Array, i index, x  item, j, size  integer
Array Create(j, list) ::= return an array of j dimensions where

list is a j-tuple whose ith element is

the size of the ith dimension. Items are

undefined.

Item Retrieve(A, i) ::= if (i index) return the item

associated with index value i

in array A
else return error

Array Store(A, i, x) ::= if (i in index) return an array that

is identical to array A except

the new pair
<i, x> has been inserted

else return error
end array

Abstract data type Array

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 19 ASSISTANT PROFESSOR AI&DS

Example:

Program

to find

sum of n

numbers

'plist'.

#define MAX_SIZE 100 float

sum(float [], int); float

input[MAX_SIZE], answer; int

i;
void main (void)
{ for (i = 0; i < MAX_SIZE; i++)

input[i] = i;
answer = sum(input, MAX_SIZE);

printf("The sum is: %f\n", answer);
}
float sum(float list[], int n)
{ int i; float tempsum = 0;

for (i = 0; i < n; i++)

tempsum += list[i];
return tempsum; }

Program to find sum of n numbers

ARRAYS IN C

 • A one - dimensional array can be declared as follows:

int list[5]; //array of 5 integers

int *plist[5]; //array of 5 pointers to integers

 • Compiler allocates 5 consecutive memory - locations for each of the variables 'list' and

 • Address of first element list[0] is called base - address.

• Memory - address of list[i] can be computed by compiler as

 + i*sizeof(int) where  = base address

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 20 ASSISTANT PROFESSOR AI&DS

Program

to print

both

address of

ith

element of

given

array &

the value

found at

that

address:

DYNAMICALLY ALLOCATED ARRAYS ONE-DIMENSIONAL ARRAYS

• When writing programs, sometimes we cannot reliably determine how large an array must be.

• A good solution to this problem is to

→ defer this decision to run-time &

→ allocate the array when we have a

good estimate of required array-size

• Dynamic memory allocation can

be performed as follows:

void print1(int *ptr, int rows)

{

/* print out a one-dimensional array using a pointer
*/ int i; printf(“Address

Contents\n”); for (i=0; i <

rows; i++)

printf(“%8u%5d\n”, ptr+i, *(ptr+i));
printf(“\n”);

}

 void

main()

{ int one[] = {0, 1, 2, 3, 4};

print1(&one[0], 5)

}

Program to print both address of ith element of given array

Output: one dimensional array addressing

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 21 ASSISTANT PROFESSOR AI&DS

int i,n,*list;
printf("enter the number of numbers to generate");
scanf("%d",&n);
if(n<1)
{

printf("improper value");
exit(0);

}
MALLOC(list, n*sizeof int)); (

• The above code would allocate an array of exactly the required size and hence would not

result in any wastage.

TWO DIMENSIONAL ARRAYS

• These are created by using the concept of array of arrays.

• A 2 - dimensional array is represented as a 1 - dimensional array in which each element has a

pointer to a 1 - dimensional array as shown below

 int x[5][7]; //we create a 1 - dimensional array x whose length is 5;

 //each element of x is a 1 - dimensional array whose length is 7.

 • Address of x[i][j] = x[i]+j*sizeof(int)

 FIG: Array - of - arrays representation

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 22 ASSISTANT PROFESSOR AI&DS

REALLOC

• These functions resize memory previously allocated by either malloc or calloc. For example,

realloc(p,s); //this changes the size of memory-block pointed at by p to s < oldSize, the

rightmost oldSize-s bytes of old block are freed..

• When s>oldSize, the additional s-oldSize have an unspecified value and when s

#include <stdlib.h> int
**array;
array = malloc(nrows * sizeof(int *)); if(array

== NULL)
{ printf("out of memory\n"); exit or

return
}
for(i = 0; i < nrows; i++)
{ array[i] = malloc(ncolumns * sizeof(int));

if(array[i] == NULL)
{ printf("out of memory\n"); exit or

return
}

}

Prg: Dynamically create a two-dimensional array

CALLOC

• These functions → allocate user - specified amount of memory & → initialize the allocated

memory to 0.

• On successful memory - allocation, it returns a pointer to the start of the new block. On

failure, it returns the value NULL.

• Memory can be allocated using calloc as shown below:

int *p;
p=calloc(n, sizeof(int)); // where n=array size
• To create clean and readable programs, a CALLOC macro can be created as shown below:

#define CALLOC(p,n,s)
if((p=calloc(n,s))==NULL)
{

printf("insufficient memory");

exit(1);

}

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 23 ASSISTANT PROFESSOR AI&DS

• On successful resizing, it returns a pointer to the start of the new block. On failure, it returns

the value NULL.

• To create clean and readable programs, the REALLOC macro can be created as shown below:

#define REALLOC(p,s)

if((p=realloc(p,s))==NULL)
{ printf("insufficient memory"); exit(0);
}

STRUCTURES AND UNIONS

Structures

Arrays are collections of data of the same type. In C there is an alternate way of grouping data that

permits the data to vary in type. This mechanism is called the struct, short for structure. A structure

(called a record in many other programming languages) is a collection of data items, where each

item is identified as to its type and name.

struct { char

name[10]; int

age; float

salary;
} person;

 Creates a variable whose name is person and that has three fields:

• a name that is a character array

• an integer value representing the age of the person

• a float value representing the salary of the individual

 Dot operator(.) is used to access a particular member of the structure.

strcpy(person.name,"james") ; person.age

 person.salary = 35000;

 We can create our own structure data types by using the typedef statement as below:

typedef struct human—

being { char

name[10]; int age;

float salary;
 };

-OR-

typedef struct

{ char

name[10]; int

age; float

salary;
} human-being;

 Variables can be declared as follows:

 humanBeing person1,person2;

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 24 ASSISTANT PROFESSOR AI&DS

 Structures cannot be directly checked for equality or inequality. So, we can write a function to

do this.

 A person born on February 11, 1944, would have the values for the date struct set as:

personl.dob.month = 2; personl.dob.day = 11;

personl.dob.year = 1944;

int humans — equal(human — being personl,
human — being person2)
{ /* being otherwise return FALSE
if (strcmp(personl.name, person2.name)) return FALSE;
if (personl.age != person2.age) return FALSE;
if (personl.salary 1= person2.salary) return FALSE;
return TRUE;
return TRUE if personl and person2 are the same human
*/
}

if humans (— equal(personl,person2))
printf("The two human beings are the same \ n"); else
printf{"The two human beings are not the same \ n");

PRG: Function to check equality of structures

 We can embed a structure within a structure.

typedef struct {
int month;
int day;
int year; } date;

typedef struct human — being {
char name[10];
int age;
float salary;
date dob;
; }

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 25 ASSISTANT PROFESSOR AI&DS

Unions

 This is similar to a structure, but the fields of a union must share their memory space.

This means that only one field of the union is "active" at any given time.

• The size of an object of a struct or union type is the amount of storage necessary to

represent the largest component, including any padding that may be required.

• Structures must begin and end on the same type of memory boundary, for example, an

even byte boundary or an address that is a multiple of 4, 8, or 16.

typedef struct sex — type {
enum tag — field {female, male
 sex; }

union {
int children;
int beard ;
 u; }
; }

typedef struct human — being {
char name[10];
int age;
float salary;
date dob;
sex — type sex — info;
} ;
human — being personl, person2;

 We could assign values to person! and person2 as:

personl.sex — info.sex = male;
personl.sex — info.u.beard = FALSE;

and

person2.sex — info.sex = female;
person2.sex — info.u.children - 4 ;

 we first place a value in the tag field. This allows us to determine which field in the union

is active. We then place a value in the appropriate field of the union.

Internal Implementation Of Structures

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 26 ASSISTANT PROFESSOR AI&DS

Self-Referential Structures

• A self-referential structure is one in which one or more of its components is a pointer

to itself.

• These require dynamic storage management routines (malloc & free) to explicitly

obtain and release memory.

typedef struct list
{ char

data;
list *link; //list is a pointer to a list structure }

;

• Consider three structures and values assigned to their respective fields:

List item1,item2,item3;
item1.data='a';
item2.data='b';
item3.data='c';
item1.link=item2.link=item3.link=NULL;

• We can attach these structures together as follows

item1.link=&item2;
item2.link=&item3;

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 27 ASSISTANT PROFESSOR AI&DS

POLYNOMIALS ABSTRACT DATA TYPE

• A polynomial is a sum of terms, where each term has a form axe , where x=variable,

a=coefficient and e=exponent.

• For ex, A(x)=3x20+2x5+4 and B(x)=x4+10x3+3x2+1

• The largest(or leading) exponent of a polynomial is called its degree. • Assume that we

have 2 polynomials,

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 28 ASSISTANT PROFESSOR AI&DS

 A(x)= ∑ai x
 i & B(x)= ∑bi x i then A(x)+B(x)= ∑(ai + bi)x

i

POLYNOMIAL REPRESENTATION: FIRST METHOD

#define MAX_DEGREE 100

typedef struct
{ int degree;

float coef[MAX_DEGREE];
}polynomial;

polynomial a;

• If a is of type ‘polynomial’ then A(x)= ∑ai x
i can be represented as:

a.degree=n

a.coeff[i]=an-i

• In this representation, we store coefficients in order of decreasing exponents, such that

a.coef[i] is the coefficient of xn-i provided a term with exponent n-i exists; otherwise,

a.coeff[i]=0

• Disadvantage: This representation wastes a lot of space. For instance, if

a.degree<<MAX_DEGREE and polynomial is sparse, then we will not need most of the

positions in a.coef[MAX_DEGREE] (sparse means number of terms with non-zero

coefficient is small relative to degree of the polynomial).

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 29 ASSISTANT PROFESSOR AI&DS

POLYNOMIAL REPRESENTATION: SECOND METHOD

the exponents)

• Disadvantage: However, when all the terms are non-zero, the current representation requires

about twice as much space as the first one.

#define MAX_TERMS 100
typedef struct polynomial
{

float coef;
int expon;

} polynomial;

polynomial terms[MAX_TERMS];

int avail=0;

• A(x)=2x 1000 +1 and B(x)=x 4 +10 x 3 x +3 2 can be represented as shown below. +1

 Array representation of two polynomials

• startA & startB give the index of first term of A and B respectively . finishA & finishB give

the index of the last term of A & B respectively avail gives the index of next free location in

the array.

• Any polynomial A that has ‘n’ non - zero terms has startA & finishA such that

finishA=startA+n - 1

• Advantage: This representation solves the problem of many 0 terms since A(x) - 2 x1000+1

uses only 6 units of storage (one for startA, one for finishA, 2 for the coefficients and 2 for

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 30 ASSISTANT PROFESSOR AI&DS

POLYNOMIAL ADDITION:

Function to add a new term

void attach(float coefficient, int exponent)
{

/* add a new term to the polynomial */ if

(avail >= MAX_TERMS)
{ fprintf(stderr, “Too many terms in the polynomial\n”);

exit(1);
} terms[avail].coef =

coefficient; terms[avail++].expon =

exponent; }

void padd (int starta, int finisha, int startb, int finishb,int *
startd, int *finishd)
{

/* add A(x) and B(x) to obtain D(x) */
float coefficient;
*startd = avail;
while starta (<= finisha && startb <= finishb)
{

switch (COMPARE(terms[starta].expon, terms[startb].expon))
{
case - 1: /* a expon < b expon */

attach(terms[startb].coef,
terms[startb].expon); startb++
break;

case 0: /* equal exponents */
coefficient = terms[starta].coef +
terms[startb].coef; if (coefficient)
attach (coefficient, terms[starta].expon);

starta++;
startb++; break;

case 1: /* a expon > b expon */
attach(terms[starta].coef,
terms[starta].expon); starta++;

}
/* add in remaining terms of A(x) */

for(; starta <= finisha; starta++)
attach(terms[starta].coef,
terms[starta].expon);
/* add in remaining terms of B(x) */

for(; startb <= finishb; startb++)
attach(terms[startb].coef,
terms[startb].expon);

*finishd = avail - 1 ;
}

}

Function to add two polynomials

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 31 ASSISTANT PROFESSOR AI&DS

ANALYSIS

• Let m and n be the number of non-zero terms in A and B respectively.

• If m>0 and n>0, the while loop is entered. At each iteration, we increment the value of startA or

startB or both.

• Since the iteration terminates when either startA or startB exceeds finishA or finishB respectively,

the number of iterations is bounded by m+n-1. This worst case occurs when A(x)=∑ x2i and

B(x)=∑x2i+1

• The asymptotic computing time of this algorithm is O(n+m)

SPARSE MATRIX REPRESENTATION

• We can classify uniquely any element within a matrix by using the triple . Therefore, we can

use an array of triples to represent a sparse matrix.

• Sparse matrix contains many zero entries.

• When a sparse matrix is represented as a 2-dimensional array, we waste space For ex, if

100*100 matrix contains only 100 entries then we waste 9900 out of 10000 memory spaces.

• Solution: Store only the non-zero elements.

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 32 ASSISTANT PROFESSOR AI&DS

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 33 ASSISTANT PROFESSOR AI&DS

SPARSE MATRIX REPRESENTATION

• We can classify uniquely any element within a matrix by using the triple <row,col,value>.

Therefore, we can use an array of triples to represent a sparse matrix

SpareMatrix Create(maxRow,maxCol) ::=
#define MAX_TERMS 101 typedef

struct term
{ int col;

int row;

int value;
} term;

 term a[MAX_TERMS];

Sparse matrix and its transpose stored as triples

• a[0].row contains the number of rows;

a[0] .col contains number of columns and

a[0].value contains the total number of nonzero entries.

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 34 ASSISTANT PROFESSOR AI&DS

TRANSPOSING A MATRIX

• To transpose a matrix ,we must interchange the rows and columns.

• Each element a[i][j] in the original matrix becomes element b[j][i] in the transpose matrix.

• Algorithm To transpose a matrix:

for each row i
 take element<i,j,value> and store it

as element<i,j,value> of the transpose;

for all elements in column j

place element<i,j,value> in

element<i,j,value>

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 35 ASSISTANT PROFESSOR AI&DS

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 36 ASSISTANT PROFESSOR AI&DS

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 37 ASSISTANT PROFESSOR AI&DS

THE STRING ABSTRACT DATA TYPE

The string, whose component elements are characters. As an ADT, we define a string to have

the form, S = So, .. . , where Si are characters taken from the character set of the programming

language. If n = 0, then S is an empty or null string.There are several useful operations we could

specify for strings.

void storesum(term d[], int *totald, int row, int column, int *sum)

{

/* if *sum != 0, then it along with its row and column position

is stored as the *totald+1 entry in d */ if (*sum) if (*totald <

MAX_TERMS)

{

d[++*totald].row = row; d[*totald].col = column;
d[*totald].value = *sum;

}

else

{

fprintf(stderr, ”Numbers of terms in product exceed %d\n”,

MAX_TERMS); exit(1);

}

}

}

storesum function

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 38 ASSISTANT PROFESSOR AI&DS

String insertion:

Assume that we have two strings, say string 1 and string 2, and that we want to insert string 2 into

string 1 starting at the ith position of string 1. We begin with the declarations:

we represent strings as character arrays terminated with the null character \ 0.

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 39 ASSISTANT PROFESSOR AI&DS

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 40 ASSISTANT PROFESSOR AI&DS

Pattern Matching

Assume that we have two strings, string and pat, where pat is a pattern to be searched for in

string. The easiest way to determine if pat is in string is to use the built-in function strstr. If

we have the following declarations:

The call (t = strstr(string,pat)) returns a null pointer if pat is not in string.

If pat is in string, t holds a pointer to the start of pat in string. The entire string beginning at

position t is printed out.

Although strstr seems ideally suited to pattern matching, there are two reasons why we may

want to develop our own pattern matching function:

• The function strstr is new to ANSI C. Therefore, it may not be available with the

compiler we are using.

• There are several different methods for implementing a pattern matching function.

The easiest but least efficient method sequentially examines each character of the

string until it finds the pattern or it reaches the end of the string. If pat is not in string,

this method has a computing time of O(n . m) where n is the length of pat and w is the

length of string. We can do much better than this, if we create our own pattern

matching function.

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 41 ASSISTANT PROFESSOR AI&DS

Knuth, Morris, Pratt Pattern Matching algorithm.

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 42 ASSISTANT PROFESSOR AI&DS

THE STACK ABSTRACT DATA TYPE STACK

• This is an ordered-list in which insertions(called push) and deletions(called pop) are made at

one end called the top

• Since last element inserted into a stack is first element removed, a stack is also known as a

LIFO list(Last In First Out).

When an element is inserted in a stack, the concept is called push, and when an element is

removed from the stack, the concept is called pop.

Trying to pop out an empty stack is called underflow and trying to push an element in a full

 → return-address

• The previous stack-frame pointer points to the stack-frame of the invoking-function while

return-address contains the location of the statement to be executed after the function

terminates.

• If one function invokes another function, local variables and parameters of the

invokingfunction are added to its stack-frame.

stack is called overflow.

: Inserting and deleting elements in a stack

As shown in above figure, the elements are added in the stack in the order A, B, C, D, E, then

E is the first element that is deleted from the stack and the last element is deleted from stack

is A . Figure illustrates this sequence of operations.

Since the last element inserted into a stack is the first element removed, a stack is also known

as a Last - In - First - Out (LIFO) list.

SYSTEM STACK

A stack used by a program at run - time to process function - calls is called system - stack.

• When functions are invoked, programs

 → create a stack - frame (or activation - record) &

 → place the stack - frame on top of system - stack

• Initially, stack - frame for invoked - function contains only

→ pointer to previous stack - frame &

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 43 ASSISTANT PROFESSOR AI&DS

• A new stack-frame is then

→ created for the invoked-function &

→ placed on top of the system-stack

• When this function terminates, its stack-frame is removed (and processing of the

invokingfunction, which is again on top of the stack, continues). • Frame-pointer(fp) is a

pointer to the current stack-frame.

System stack after function call

ARRAY REPRESENTATION OF STACKS

• Stacks may be represented in the computer in various ways such as one - way

linked list (Singly linked list) or linear array.

• Stacks are maintained by the two variables such as TOP and MAX_STACK_SIZE.

• TOP which contains the location of the top element in the stack. If TOP= - 1 ,

then it indicates stack is empty.

• MAX_STACK_SIZE which gives maximum number of elements that can be

stored in stack.

Stack can represented using linear array as shown below

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 44 ASSISTANT PROFESSOR AI&DS

Stack ADT

• The following operations make a stack an ADT. For simplicity, assume the data is an integer

type.

 – int Top(): Returns the last inserted element without removing it.

– int Size(): Returns the number of elements stored in the stack.

– int IsEmptyStack(): Indicates whether any elements are stored in the stack or not.

– int IsFullStack(): Indicates whether the stack is full or not.

• The easiest way to implement this ADT is by using a one-dimensional array, say, stack

[MAX-STACK-SIZE], where MAX STACK SIZE is the maximum number of entries.

• Main stack operations

 – Push (int data): Inserts data onto stack.

 – int Pop(): Removes and returns the last inserted element from the stack.

• Auxiliary stack operations

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 45 ASSISTANT PROFESSOR AI&DS

• The first, or bottom, element of the stack is stored in stack[0], the second in stack[1] and the

ith in stack [i-1].

• Associated with the array is a variable, top, which points to the top element in the stack.

Initially, top is set to -1 to denote an empty stack.

• we have specified that element is a structure that consists of only a key field.

1. CREATE STACK:

• Function push() checks to see if the stack is full. If it is, it calls stackFull, which prints an

error message and terminates execution.

• When the stack is not full, we increment top and assign item to stack[top].

The element which is used to insert or delete is specified as a structure that consists of

only a key field.

1. Boolean IsEmpty(Stack)::= top < 0 ;

2. Boolean IsFull(Stack)::= top >= MAX_STACK_SIZE - 1 ;

The I sEmpty and IsFull operations are simple, and is implemented directly in the

program push and pop functions. Each of these functions assumes that the variables

stack and top are global.

Add an item to a stack

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 46 ASSISTANT PROFESSOR AI&DS

Delete an item in a stack

F or deletion, the stack - empty function should print an error message and return an item of

type element with a key field that contains an error code .

 STACK USING DYNAMIC ARRAYS

• Shortcoming of static stack implementation: is the need to know at compile - time, a good

bound(MAX_STACK_SIZE) on how large the stack will become.

• This shortcoming can be overcome by

→ using a dynamically allocated array for the elements &

→ then increasing the size of the array as needed

• Initially, capacity=1 where capacity=maximum no. of stack - elements that may be stored in

array.

• The CreateS() function can be implemented as follows

Stack CreateS(max - stack - size') ::=

 #define MAX — STACK — SIZE 100 /*maximum stack size */

typedef struct

{

 int key;

 /* other fields */

} element;

element stack[MAX — STACK — SIZE];

int top - - 1 ;

Boolean IsEmpty(Stack) ::= top <0;

Boolean IsFulI(Stack) ::= top >= MAX - STACK - SIZE - ; 1

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 47 ASSISTANT PROFESSOR AI&DS

• Once the stack is full, realloc() function is used to increase the size of array.

• In array-doubling, we double array-capacity whenever it becomes necessary to increase the

capacity of an array.

ANALYSIS

• In worst case, the realloc function needs to

→ allocate 2*capacity*sizeof(*stack) bytes of memory and

→ copy capacity*sizeof(*stack) bytes of memory from the old array into the new one.

• The total time spent over all array doublings = O(2k) where capacity=2k

• Since the total number of pushes is more than 2k-1 , the total time spend in array doubling is

O(n) where n=total number of pushes.

STACK APPLICATIONS: POLISH NOTATION

Expressions: It is sequence of operators and operands that reduces to a single value after

evaluation is called an expression.

X = a / b – c + d * e – a * c

In above expression contains operators (+, –, /, *) operands (a, b, c, d, e). Expression

can be represented in in different format such as

• Prefix Expression or Polish notation

• Infix Expression

• Postfix Expression or Reverse Polish notation

• Infix Expression: In this expression, the binary operator is placed in-between the

operand. The expression can be parenthesized or un- parenthesized.

Example: A + B

Here, A & B are operands and + is operand

• Prefix or Polish Expression: In this expression, the operator appears before its

operand.

Example: + A B

Here, A & B are operands and + is operand

• Postfix or Reverse Polish Expression: In this expression, the operator appears after

its operand.

Example: A B +

Here, A & B are operands and + is operand

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 48 ASSISTANT PROFESSOR AI&DS

Precedence of the operators

The first problem with understanding the meaning of expressions and statements is

finding out the order in which the operations are performed. Example: assume that

a =4, b =c =2, d =e =3 in below expression

X = a / b – c + d * e – a * c

 ((4/2)-2) + (3*3)-(4*2)

(4/ (2-2 +3)) *(3-4)*2

 =0+9-8 OR = (4/3) * (-1) * 2

 =1 = -2.66666

The first answer is picked most because division is carried out before subtraction, and

multiplication before addition. If we wanted the second answer, write expression

differently using parentheses to change the order of evaluation

X= ((a / (b – c + d)) * (e – a) * c

In C, there is a precedence hierarchy that determines the order in which operators are

evaluated. Below figure contains the precedence hierarchy for C.

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 49 ASSISTANT PROFESSOR AI&DS

highest precedence are evaluated first.

• The associativity column indicates how to evaluate operators with the same

precedence. For example, the multiplicative operators have left-to-right associativity.

This means that the expression a * b / c % d / e is equivalent to ((((a * b) / c) %

d) / e)

• Parentheses are used to override precedence, and expressions are always evaluated

from the innermost parenthesized expression first

• The operators are arranged from highest precedence to lowest. Operators with

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 50 ASSISTANT PROFESSOR AI&DS

INFIX TO POSTFIX CONVERSION

An algorithm to convert infix to a postfix expression as follows:

1. Fully parenthesize the expression.

2. Move all binary operators so that they replace their corresponding right parentheses.

3. Delete all parentheses.

Example: Infix expression: a/b -c +d*e

-a*c Fully parenthesized :

((((a/b)-c) + (d*e))-a*c))

: a b / e – d e * + a c *

Example [Parenthesized expression]: Parentheses make the translation process

more difficult because the equivalent postfix expression will be parenthesis - free.

The expression a*(b +c)*d which results abc + *d* in postfix. Figure shows the

translation process.

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 51 ASSISTANT PROFESSOR AI&DS

•

The analysis of the examples suggests a precedence-based scheme for stacking and

unstacking operators.

• The left parenthesis complicates matters because it behaves like a low-precedence

operator when it is on the stack and a high-precedence one when it is not. It is placed

in the stack whenever it is found in the expression, but it is unstacked only when its

matching right parenthesis is found.

• There are two types of precedence, in-stack precedence (isp) and incoming

precedence (icp).

The declarations that establish the precedence’s are:

/* isp and icp arrays-index is value of precedence lparen rparen, plus, minus, times,

nce token; int n = 0,top = 0; /* place eos on stack */ stack[0]

= eos; for (token = getToken(&symbol, &n); token != eos;

token = getToken(&symbol,& n))

divide, mod, eos */

int isp[] = {0 ,19,12,12,13,13,13,0};

int icp[] = {20,19 ,12,12,13,13,13,0};

void postfix(void)

{

char

symbol;

precede

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 52 ASSISTANT PROFESSOR AI&DS

{ if (token == operand)

printf("%c",

symbol); else if (token

== rparen)

{ while (stack[top] !=

lparen)

printToken(p

op()) ;

pop() ;

}

else{

while(isp[stack[top]] >=

icp[token])

printToken(pop());

push(token);

}

}

while((token = pop ())!= eos)

printToken(token);

printf(" \ n");

}

Program: Function to convert from infix to postfix

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 53 ASSISTANT PROFESSOR AI&DS

EVALUATION OF POSTFIX EXPRESSION

• The evaluation process of postfix expression is simpler than the evaluation of

infix expressions because there are no parentheses to consider.

• To evaluate an expression, make a single left-to-right scan of it. Place the

operands on a stack until an operator is found. Then remove from the stack, the

correct number of operands for the operator, perform the operation, and place the

result back on the stack and continue this fashion until the end of the expression.

We then remove the answer from the top of the stack.

DATA STRUCTURES-BCS304 MODULE 1

SHIVARANJANI S.S 54 ASSISTANT PROFESSOR AI&DS

precedence getToken(char *symbol, int *n)

{ *symbol = expr[(*n)++];

switch (*symbol)

{

case '(' : return lparen;

case ')' : return rparen;

case '+' : return plus;

case ' - ' : return minus;

case '/' : return divide;

case '*' : return times;

case '%' : return mod;

case ' ' : return eos;

default: return operand;

}

}

Program: Function to get a token from the input string

• The function eval () contains the code to evaluate a postfix expression. Since an

operand (symbol) is initially a character, convert it into a single digit integer.

• To convert use the statement, symbol - '0' . The statement takes the ASCII value

of symbol and subtracts the ASCII value of '0', which is 48, from it. For example,

suppose symbol = '1. The character '1' has an ASCII value of 49. Therefore, the

statement symbol - '0' produces as result the number 1.

• The function getToken() , obtain tokens from the expression string. If the token is

an operand, convert it to a number and add it to the stack. Otherwise remove two

operands from the stack, perform the specified operation, and place the result back

on the stack. When the end of expression is reached, remove the result from the

stack.

Akshaya Institute of Technology
Approved by AICTE, New Delhi, Affiliated to VTU, Belgaum, Recognized by Govt. of

Karnataka,

 Obalapura Post, Lingapura, Koratagere Road, Tumkur - 572 106, Karnataka

EXHAUSTIVE QUESTION BANK

Batch 2025 - 2026

Year/Semester/Section 2nd/3rd

Course Code -Title
BCS304 – Data Structures andApplications

Module No. -Title I – Intoduction to Data Structures

Name of the Course
In charge

Mrs.Shivaranjani S.S Designation
Asst.
Prof.

QNo. Question COs RBT

1 Define Data Structures. List and explain the different operations that can

be performed on arrays.

CO1 L1

2 Define strings. List and explain five operations that can be performed on

strings with example.

CO1 L1

3 List and describe the functions supported in C for dynamic memory

allocation.

CO1 L1

4 Define pointers. List the advantages of pointers over array. CO1 L1

5 Discuss the types of structures with appropriate examples. CO1 L2

6 Differentiate the following a) Structure and Array b) Structure and

Union.

CO1 L2

7 Define sparse matrix. Express the following matrix in triplet form and

find its transpose.

15 0 0 22

0 11 3 0

0 0 0 -6

0 0 0 0

91 0 0 0

0 0 28 0

CO1 L2

8 Illustrate the KMP pattern matching algorithm and discuss the same to

search the pattern “abcdabcy” in the text “abcxabcdabxabcdabcy”.

CO1 L2

9 Outline KMP algorithm and employ the same to find out the occurrence

of the following pattern:

P: ABCDABD

S: ABC ABCDAB ABCDABCDABDE

CO1 L3

10 What is a polynomial? Design an algorithm to add two polynomials

using ADT Polynomial(c = a + b)

CO1 L3

11 Define stack. Explain the different operations that can be performed on
stack with suitable C functions and examples.

CO1 L3

12 Convert the following infix expression to postfix expression using
stack. (A + (B * C – (D / E ^ F) * G) * H

CO1 L3

Akshaya Institute of Technology
Approved by AICTE, New Delhi, Affiliated to VTU, Belgaum, Recognized by Govt. of

Karnataka,

 Obalapura Post, Lingapura, Koratagere Road, Tumkur - 572 106, Karnataka

13 Outline the algorithm for infix to postfix and apply the same to

convert following infix expression to postfix expression.

((H*((((A+((B+C)*D))*F)*G)*E))+J)

CO1 L4

14 How to declare and initialize pointers? Explain with an example. CO1 L4

15 Illustrate the representation of 2-D arrays in memory with suitable

example.

CO1 L4

16. Implement Stack using Dynamic memory Allocation . CO1 L3

17. Evaluate the following postfix expression by showing the

contents of the stack 5 4 6 + * 4 9 3 / +

C01 L2

Course In charge HOD

