)
e

o'noouoo

S & %
<, ; d
% B 3
“ B 3
z 2

* *

0y

“Eﬁ" ¢ Approved by AICTE, New Delhi, Afﬁliated.to VTU, Belagaavi, Recognised by GOK, i
Y T NBA Accredited (CSE) e W
 Tumkur & Copenrreo

Obalapura Post, Lingapura, Koratagere Road, Tumkur- 572 106, Karnataka

AKSHAYA INSTITUTE OF TECHNOLOGY@ ('

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA
SCIENCE

Object Oriented Programming with Java - BCS306A

Notes of Lesson

Prepared by:

Dr. Champakamala S
Professor and Head
Department of AI&DS

AIT, Tumkur

Dept. of AI&DS Page 1

Vision of the Department

"To impart value-based education and nurture idealistic, ethical engineers equipped
to meet the evolving trends and technological advancements in the field of Artificial
Intelligence and Data Science."

Mission of the Department

1. To engage students in developing core competencies to solve real-
world problems using Artificial Intelligence.

2. To enlighten students into becoming technically proficient engineers
through innovation and application in Data Science.

3. To involve students in industry collaborations, career development,
and the cultivation of leadership skills.

4. To mold students into ethical professionals who uphold moral values
for the betterment of individuals and society.

Program Educational Objectives(PEOs)

PEO 1: Apply Artificial Intelligence and Data Science techniques, aligned with
industrial standards and innovative research, to address societal and environmental
challenges, thereby contributing to sustainable ecosystems.

PEO 2: Excel in professional careers by leveraging strong fundamentals, advanced
technologies, and emerging tools to become successful Data Scientists, Data Analysts,
Al Leaders, Research Scientists, or Entrepreneurs.

PEO 3: Pursue lifelong learning through higher education, research, and active
participation in conferences, seminars, workshops, and professional forums.

PEO 4: Design and deliver innovative solutions for industry in rapidly evolving
technological environments, while demonstrating effective communication,
teamwork, and entrepreneurial skills.

Dept. of AI&DS Page 2

PROGRAM OUTCOMES (POs)

PO1. Engineering knowledge: Apply the knowledge of mathematics, science,
engineering fundamentals, and an engineering specialization to the solution of
complex engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and analyze
complex engineering problems reaching substantiated conclusions using first
principles of mathematics, natural sciences, and engineering sciences.

PO3. Design/development of solutions: Design solutions for complex engineering
problems and design system components or processes that meet the specified needs
with appropriate consideration for the public health and safety, and the cultural,
societal, and environmental considerations.

PO4. Conduct investigations of complex problems:Use research-based
knowledge and research methods including design of experiments, analysis and
interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques,
resources, and modern engineering and IT tools including prediction and modeling
to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual
knowledge to assess societal, health, safety, legal and cultural issues and the
consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional
engineering solutions in societal and environmental contexts, and demonstrate the
knowledge of, and need for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and
responsibilities and norms of the engineering practice.

PO9. Individual and team work: Function effectively as an individual, and as a
member or leader in diverse teams, and in multidisciplinary settings.

Dept. of AI&DS Page 3

P010. Communication: Communicate effectively on complex engineering activities
with the engineering community and with society at large, such as, being able to
comprehend and write effective reports and design documentation, make effective
presentations, and give and receive clear instructions.

PO11. Project management and finance: Demonstrate knowledge and
understanding of the engineering and management principles and apply these to
one's own work, as a member and leader in a team, to manage projects and in
multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and
ability to engage in independent and life-long learning in the broadest context of
technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO 1:

Demonstrate proficiency in leveraging Al, ML, and Data Science tools and techniques
to create scalable, data-driven solutions for contemporary industry problems in
healthcare, finance, cybersecurity, and intelligent systems.

PSO 2:

Design, develop, and deploy intelligent systems by effectively utilizing modern tools,
frameworks, and technologies, including deep learning platforms, cloud computing
services, big data ecosystems, and end-to-end Al model pipelines.

PSO 3:

Graduates will demonstrate an understanding of the ethical, legal, and societal
implications of Al systems, ensuring fairness, transparency, data privacy, and the
responsible use of data-driven technologies.

Dept. of AI&DS Page 4

Module -2

Introducing Classes

>
>

The class is at the core of Java.

It is the logical construct upon which the entire Java language is
built because it defines the shape and nature of an object.

The class forms the basis for object-oriented programming in Java.
Any concept you wish to implement in a Java program must be
encapsulated within a class.

Class Fundamentals

>

>

The classes created exist simply to encapsulate the main() method,
which has been used to demonstrate the basics of the Java syntax.

A class is that it defines a new data type. Once defined, this new type
can be used to create objects of that type.

Thus, a class is a template for an object, and an object is an instance of a
class.

The General Form of a Class

>
>

A class is declared by use of the class keyword.
The classes that have been used up to this point are actually very
limited examples of its complete form.

Classes can (and usually do) get much more complex.

Dept of AI&DS Page 5

A simplified general form of a class definition is shown here:

class classname {
type instance-
variablel; type
instance-variable2;

S

type instance-variableN;

type methodnamel (parameter-list) {
// body of method

}

type methodnameZ(parameter-list) {
// body of method

}

// -
type methodnameN (parameter-list) {

// body of method

}
}

» The data, or variables, defined within a class are called instance variables.
» The code is contained within methods.

Collectively, the methods and variables defined within a class are called
members of the class.

» The general rule, it is the methods that determine how a class’ data can be used.

» Variables defined within a class are called instance variables because each
instance of the class (that is, each object of the class) contains its own copy of
these variables.

» The general form of a class does not specify a main() method.

» Java classes do not need to have a main() method.

» You only specify one if that class is the starting point for your program.

A Simple Class

Here is a class called Box that defines three instance variables: width, height, and depth.

Currently, Box does not contain any methods.
class Box {
double width;
double height;
double depth;
}

Dept. of AI&DS Page 6

A class defines a new type of data. In this case, the new data type is called Box. You will use this name to
declare objects of type Box.

It is important to remember that a class declaration only creates a template; it does not create an actual
object. Thus, the preceding code does not cause any objects of type Box to come into existence.

To actually create a Box object, you will use a statement like the following:

Box mybox = new Box(); // create a Box object called mybox

After this statement executes, mybox will refer to an instance of Box. Thus, it will have “physical” reality
Each time you create an instance of a class, you are creating an object that contains its own copy of each
instance variable defined by the class. Thus, every Box object will contain its own copies of the instance
variables width, height, and depth.

To access these variables, you will use the dot (.) operator.

The dot operator links the name of the object with the name of an instance variable.

For example, to assign the width variable of mybox the value 100, you would use the following statement:

mybox.width = 100;

In general, we use the dot operator to access both the instance variables and the methods within an object.

Here is a complete program that uses the Box class:

/* A program that uses the Box class.

Call this file BoxDemo.java
*/
class Box {
double width;
double height;
double depth;
}

// This class declares an object of type Box.
class BoxDemo {
public static void main (String[] args) {
Box mybox = new Box();
double vol;

// assign values to mybox's instance variables
mybox.width = 10;

mybox.height = 20;

mybox.depth = 15;

Dept of AI&DS Page 7

// compute volume of box
vol = mybox.width * mybox.height * mybox.depth;

System.out.println ("Volume is " + vol);
}

You should call the file that contains this program BoxDemo.java, because the main() method is in the class
called BoxDemo, not the class called Box. When you compile this program, you will find that two .class files
have been created, one for Box and one for BoxDemo. The Java compiler automatically puts each class into its
own .class file. It is not necessary for both the Box and the BoxDemo class to actually be in the same source file.
You could put each class in its own file, called Box.java and BoxDemo.java, respectively.

output:
Volume is 3000.0

Each object has its own copies of the instance variables. If you have two Box objects, each has its own copy
of depth, width, and height. It isimportant to understand that changes to the instance variables of one
object have no effect on the instance variables of another. For example, the following program declares two
Box objects:

// This program declares two Box objects.

class Box {
double width;
double height;
double depth;

class BoxDemo?2 ({
public static void main (String[] args) {
Box myboxl = new Box();
Box mybox2 = new Box () ;
double vol;

// assign values to myboxl's instance variables
myboxl.width = 10;
myboxl.height = 20;
myboxl.depth = 15;

/* assign different values to mybox2's
instance variables */

mybox2.width = 3;

mybox2.height = 6;

mybox2.depth = 9;

// compute volume of first box
vol = myboxl.width * myboxl.height * myboxl.depth;
System.out.println ("Volume is " + vol);

Dept. of AI&DS Page 8

// compute volume of second box
vol = mybox2.width * mybox2.height * mybox2.depth;
System.out.println("Volume is " + vol);

The output produced by this program is shown here:

Volume is 3000.0
Volume is 162.0

mybox1’s data is completely separate from the data contained in mybox2.

Declaring Object:

» When you create a class, we are creating a new data type. Obtaining objects of a class is a two-step
process. First, you must declare a variable of the class type. This variable does not define an object.

» Instead, it is simply a variable that can refer to an object.

» Second, you must acquire an actual, physical copy of the object and assign it to that variable. You can
do this using the new operator.

» The new operator dynamically allocates (that is, allocates at run time) memory for an object and
returns a reference to it. This reference is, essentially, the address in memory of the object
allocated by new.

» This reference is then stored in the variable. Thus, in Java, all class objects must be dynamically
allocated

Declare an object of type Box:

Box mybox = new Box();

This statement combines the two steps just described.

Box mybox; // declare reference to object mybox =

new Box(); // allocate a Box object

The first line declares mybox as a reference to an object of type Box. At this point, mybox does not yet refer to an
actual object. The next line allocates an object and assigns a reference to it to mybox. After the second line
executes, you can use mybox as if it were a Box object. But in reality, mybox simply holds, in essence, the memory

address of the actual Box object.

Dept. of AI&DS Page 9

A Closer Look at new

The new operator dynamically allocates memory for an object. In the context of an assignment, it has this
general form:

class-var = new classname ();
Here, class-var is a variable of the class type being created.
The classname is the name of the class that is being instantiated.
The class name followed by parentheses specifies the constructor for the class.
A constructor defines what occurs when an object of a class is created.
Constructors are an important part of all classes and have many significant attributes.

Most real-world classes explicitly define their own constructors within their class definition.

YV V V V V V V

However, if no explicit constructor is specified, then Java will automatically supply a default
constructor.

Statement Effect

Box mybox;

mybox
mybox = new Box(); —1—» | Width
mybox Height
Depth

Box object

Figure: Declaring an object of type Box

[Type text] Page 6

Assigning Object Reference Variables

Object reference variables act differently than you might expect when an assignment

takes place. For example, what do you think the following fragment does?

Box b1 = new Box();
Box b2 =b1;

b1 and b2 will both refer to the same object. The assignment of b1 to b2 did not allocate
any memory or copy any part of the original object. It simply makes b2 refer to the same
object as does b1. Thus, any changes made to the object through b2 will affect the object to
which b1 is referring, since they are the same object.

This situation is depicted here:

bl \ Wldth

/ Height Box object
Depth

—

b2

Although b1 and b2 both refer to the same object, they are not linked in any other way.
For example, a subsequent assignment to b1l will simply unhook b1 from the original
object without affecting the object or affecting b2.

For example:

Box b1 =new Box();
Box b2 =b1;

// -
b1l = null;

Here, b1 has been set to null, but b2 still points to the original object.

[Type text] Page 7

Introducing Methods

Classes usually consist of two things: instance variables and methods, to add methods to your classes.

This is the general form of a method:

type name(parameter-list) {
// body of method
}

» Here, type specifies the type of data returned by the method. This can be any valid type, including

class types that you create. If the method does not return a value, its return type must be void.

» The name of the method is specified by hame. This can be any legal identifier other than those already

used by other items within the current scope.

» The parameter-listis a sequence of type and identifier pairs separated by commas. Parameters are
essentially variables that receive the value of the arguments passed to the method when it is called.
If the method has no parameters, then the parameter list will be empty.

» Methods that have a return type other than void return a value to the calling routine using

the following form of the return statement:
return value;

Here, value is the value returned.

Adding a Method to the Box Class

Adding a method to the Box class. It may have occurred to you while looking at the preceding programs that
the computation of a box’s volume was something that was best handled by the Box class rather than the
BoxDemo class. After all, since the volume of a box is dependent upon the size of the box, it makes sense to

have the Box class compute it. To do this, you must add a method to Box, as shown here:

[Type text] Page 8

// This program includes a method inside the box class.

class Box {
double width;
double height;
double depth;

// display volume of a box

void volume () {
System.out.print ("Volume is ");
System.out.println(width * height * depth);

}

class BoxDemo3 {
public static void main(String[] args) {
Box myboxl = new Box();
Box mybox2 = new Box();

// assign values to myboxl's instance variables
myboxl.width = 10;
myboxl.height = 20;
myboxl.depth = 15;

/* assign different values to mybox2's
instance variables */

mybox2.width = 3;

mybox2.height = 6;

mybox2.depth = 9;

// display volume of first box
mybox1.volume () ;

// display volume of second box
mybox2.volume () ;

}
This program generates the following output, which is the same as the previous version.

Volume is 3000.0
Volume is 162.0

Here, myboxl.volume();
mybox2.volume () ;
The first line here invokes the volume() method on mybox1. That is, it calls volume() relative to the

mybox1 object, using the object’s name followed by the dot operator.

[Type text] Page 9

Thus, the call to mybox1.volume() displays the volume of the box defined by mybox1, and the call to
mybox2.volume() displays the volume of the box defined by mybox2. Each time volume() is invoked, it

displays the volume for the specified box.

Returning a Value

A better way to implement volume() is to have it compute the volume of the box and return the result to
the caller. The following example, an improved version of the preceding program, does just that:

// Now, volume () returns the volume of a box.

class Box {
double width;
double height;
double depth;

// compute and return volume
double volume () {

return width * height * depth;
}

class BoxDemo4d {
public static void main(String[] args) {

Box myboxl = new Box();
Box mybox2 = new Box();
double vol;

// assign values to myboxl's instance variables
myboxl.width = 10;
mybox1l.height = 20;
myboxl.depth = 15;

/* assign different values to mybox2's
instance variables */

mybox2.width = 3;

mybox2.height = 6;

mybox2.depth = 9;

// get volume of first box
vol = myboxl.volume () ;
System.out.println ("Volume is " + vol);

// get volume of second box
vol = mybox2.volume () ;
System.out.println("Volume is " + vol);

[Type text] Page 10

There are two important things to understand about returning values:

The type of data returned by a method must be compatible with the return type specified by the method.
For example, if the return type of some method is boolean, you could not return an integer.

The variable receiving the value returned by a method (such as vol, in this case) must also be compatible
with the return type specified for the method.

The call to volume() could have been used in the printin() statement directly, as shown here:
System.out.println ("Volume is" + myboxl.volume ());

In this case, when printin() is executed, mybox1.volume() will be called automatically and its value will be
passed to printin().

Adding a Method That Takes Parameters

While some methods don’t need parameters, most do. Parameters allow a method to be generalized. That is, a
parameterized method can operate on a variety of data and/or be used in a number of slightly different
situations. To illustrate this point, let’s use a very simple example. Here is a method that returns the square of

the number 10:

int square()
{
return 10 * 10;

While this method does, indeed, return the value of 10 squared, its use is very limited. However, if you modify

the method so that it takes a parameter, as shown next, then you can make square() much more useful.

int square (int i)
{

return i * 1i;

Now, square() will return the square of whatever value it is called with. That is, square() is now a general-

purpose method that can compute the square of any integer value, rather than just 10.

[Type text] Page 11

Here is an example:

int x, y;

x = square(5); // x equals 25
x = square(9); // x equals 81
y = 2;

x = square(y); // x equals 4

// This program uses a parameterized method.

class Box {
double width;
double height;
double depth;

// compute and return volume
double volume () {

return width * height * depth;
}

// sets dimensions of box
void setDim(double w, double h, double d) {

width = w;
height = h;
depth = d;

}
}

class BoxDemo5 {
public static void main (String[] args) {
Box myboxl = new Box();
Box mybox2 = new Box () ;
double vol;

// initialize each box
myboxl.setDim (10, 20, 15);
mybox2.setDim (3, 6, 9);

// get volume of first box
vol = myboxl.volume ();
System.out.println ("Volume is " + vol);

// get volume of second box

vol = mybox2.volume () ;
System.out.println ("Volume is " + vol);

As you can see, the setDim() method is used to set the dimensions of each box.

[Type text] Page 12

Constructors

» Java allows objects to initialize themselves when they are created. This automatic
initialization is performed through the use of a constructor.

» A constructor initializes an object immediately upon creation. It has the same name as
the class in which it resides and is syntactically similar to a method.

» Once defined, the constructor is automatically called when the object is created, before
the new operator completes.

» Constructors have no return type, not even void. This is because the implicit return
type of a class’ constructor is the class type itself.

Types of Constructors in Java

e Default Constructor

e Parameterized Constructor

1. Default Constructor in Java

A constructor that has no parameters is known as default the constructor. A default constructor is
invisible.

2. Parameterized Constructor in Java

A constructor that has parameters is known as parameterized constructor. If we want to initialize

fields of the class with our own values, then we use a parameterized constructor.

You can rework the Box example so that the dimensions of a box are automatically initialized
when an object is constructed. To do so, replace setDim() with a constructor.

This version is shown here:

/* Here, Box uses a constructor to initialize the
dimensions of a box.
*/
class Box {
double width;
double height;
double depth;

// This is the constructor for Box.

Box () {
System.out.println ("Constructing Box") ;
width = 10;
height = 10;
depth = 10;

}

[Type text] Page 13

// compute and return volume
double volume () {
return width * height * depth;
}
}

class BoxDemo6 {
public static void main(String[] args) {
// declare, allocate, and initialize Box objects
Box myboxl = new Box();
Box mybox2 = new Box();

double vol;

// get volume of first box
vol = myboxl.volume () ;
System.out.println ("Volume is " + vol);

// get volume of second box
vol = mybox2.volume () ;
System.out.println ("Volume is " + vol);

}
When this program is run, it generates the following results:

Constructing Box
Constructing Box
Volume is 1000.0
Volume is 1000.0

Parameterized Constructors

A constructor that has parameters is known as parameterized constructor. If we want to initialize

fields of the class with our own values, then we use a parameterized constructor.

For example, the following version of Box defines a parameterized constructor that sets the dimensions of a box as

specified by those parameters. Pay special attention to how Box objects are created.

/* Here, Box uses a parameterized constructor to initialize the dimensions of a box.*/
class Box {
double width;
double height;
double depth;

// This is the constructor for Box.
Box (double w, double h, double d) {

width = w;
height = h;
depth = d;

[Type text] Page 14

// This is the constructor for Box.
Box (double w, double h, double d) {

width = w;
height = h;
depth = d;

}

// compute and return volume
double volume () {

return width * height * depth;

class BoxDemo7 {
public static void main(String[] args) {
// declare, allocate, and initialize Box objects
Box myboxl = new Box (10, 20, 15);
Box mybox2 = new Box (3, 6, 9);

double vol;

// get volume of first box
vol = myboxl.volume () ;
System.out.println ("Volume is " + vol);

// get volume of second box
vol = mybox2.volume () ;
System.out.println("Volume is " + vol);

The output from this program is shown here:

Volume is 3000.0
Volume is 162.0

The this Keyword

Sometimes a method will need to refer to the object that invoked it. To allow this, Java defines the
this keyword. this can be used inside any method to refer to the current object. That is, this is always
a reference to the object on which the method was invoked. You can use this anywhere a reference to
an object of the current class’ type is permitted.

To better understand what this refers to, consider the following version of Box():

// A redundant use of this.

Box (double w, double h, double d) {
this.width = w;
this.height = h;
this.depth = d;

[Type text] Page 15

The this Keyword

Here is given the 6 usage of java this keyword.

this can be used to refer current class instance variable.
this can be used to invoke current class method (implicitly)
this() can be used to invoke current class constructor.

this can be passed as an argument in the method call.

this can be passed as argument in the constructor call.

o s WwN e

this can be used to return the current class instance from the method.

To better understand what this refers to, consider the following version of Box():

// A redundant use of this.
Box(double w, double h, double d) {
this.width = w;
this.height = h;
this.depth = d;

Instance Variable Hiding

» Instance variable hiding refers to a state when instance variables of the same name are
present in superclass and subclass.

» When a local variable has the same name as an instance variable, the local variable hides the instance
variable. This is why width, height, and depth were not used as the names of the parameters to the
Box() constructor inside the Box class.

» Because this lets you refer directly to the object, you can use it to resolve any namespace collisions
that might occur between instance variables and local variables.

» For example, here is another version of Box(), which uses width, height, and depth for parameter
names and then uses this to access the instance variables by the same name:

// Use this to resolve name-space collisions.
Box (double width, double height, double depth) {
this.width = width;
this.height = height;
this.depth = depth;
}

[Type text] Page 16

https://www.javatpoint.com/this1
https://www.javatpoint.com/this2
https://www.javatpoint.com/this3
https://www.javatpoint.com/this4
https://www.javatpoint.com/this5
https://www.javatpoint.com/this6

Garbage Collection

» Java takes an approach for deallocation of memory automatically. The technique that accomplishes this is
called garbage collection. It works like this: when no references to an object exist, that object is assumed

to be no longer needed, and the memory occupied by the object can be reclaimed.
» Thereis no need to explicitly destroy objects.
» Garbage collection only occurs sporadically (if at all) during the execution of your program.

» It will not occur simply because one or more objects exist that are no longer used.

A Stack Class

» Astack stores data using first-in, last-out ordering. That is, a stack is like a stack of plates on a table—the
first plate put down on the table is the last plate to be used.
Stacks are controlled through two operations traditionally called push and pop.
To put an item on top of the stack, you will use push.
To take an item off the stack, you will use pop. As you will see, it is easy to encapsulate the entire stack
mechanism.

» Hereis a class called Stack that implements a stack for up to ten integers:
// This class defines an integer stack that can hold 10 values

class Stack {
int[] stck = new int[10];
int tos;

// Initialize top-of-stack
Stack () {
tos = -1;

}

// Push an item onto the stack
void push(int item) {
if (tos==9)
System.out.println("Stack is full.");
else
stck[++tos] = item;
}

// Pop an item from the stack
int pop() {
if(tos < 0) {
System.out.println ("Stack underflow.");

[Type text] Page 17

return 0O;
}
else
return stck[tos--];

public static void main(String[] args) {
Stack mystackl = new Stack();
Stack mystack2 = new Stack();

// push some numbers onto the stack
for(int i=0; 1<10; i++) mystackl.push(i);
for (int i=10; i<20; i++) mystack2.push (i) ;

// pop those numbers off the stack

System.out.println ("Stack in mystackl:");

for(int i=0; i<10; i++)
System.out.println (mystackl.pop());

System.out.println ("Stack in mystack2:");
for(int i=0; i<10; i++)
System.out.println (mystack2.pop());
}

This program generates the following output:

Stack in mystackl:
9

O R N WD Uloy J

Stack in mystack?2:
19
18
17
16
15
14
13
12
11
10

[Type text] Page 18

Overloading Methods

» In Java, it is possible to define two or more methods within the same class that share the
same name, as long as their parameter declarations are different. When this is the case,
the methods are said to be overloaded, and the process is referred to as method
overloading.

» Method overloading is one of the ways that Java supports polymorphism.

» When an overloaded method is invoked, Java uses the type and/or number of arguments
as its guide to determine which version of the overloaded method to actually call.

» Thus, overloaded methods must differ in the type and/or number of their parameters.

» While overloaded methods may have different return types, the return type alone is
insufficient to distinguish two versions of a method.

» When Java encounters a call to an overloaded method, it simply executes the version of
the method whose parameters match the arguments used in the call.

Here is a simple example that illustrates method overloading:

// Demonstrate method overloading.
class OverloadDemo {
void test () {
System.out.println ("No parameters");

}

// Overload test for one integer parameter.
void test (int a) {

System.out.println("a: " + a);
}

// Overload test for two integer parameters.
void test (int a, int b) {

System.out.println("a and b: " + a + " " + b);
}

// Overload test for a double parameter

double test (double a) {
System.out.println ("double a: " + a);
return a*a;

}

class Overload {
public static void main (String[] args) {
OverloadDemo ob = new OverloadDemo () ;
double result;

// call all versions of test()

ob.test ()

ob.test (10) ;

ob.test (10, 20);
.
[Type text] Page 19

result = ob.test (123.25);

System.out.println ("Result of ob.test (123.25):

This program generates the following output:

No parameters

a: 10
a and b: 10 20
double a: 123.25

Result of ob.test (123.25): 15190.5625

" + result);

As you can see, test() is overloaded four times. The first version takes no parameters, the second takes one

integer parameter, the third takes two integer parameters, and the fourth takes one double parameter. The fact

that the fourth version of test() also returns a value is of no consequence relative to overloading, since return

types do not play a role in overload resolution.

Java’s automatic type conversions can play a role in overload resolution. For example, consider the following

program:

// Automatic type conversions apply to overloading.

class OverloadDemo {
void test () {
System.out.println ("No parameters");

}

// Overload test for two integer parameters.
void test (int a, int b) {

System.out.println("a and b:
}

"4 4"

// Overload test for a double parameter
void test (double a) {

System.out.println("Inside test (double) a:

}

class Overload ({
public static void main (String[] args) {
OverloadDemo ob = new OverloadDemo () ;
int i = 88;
ob.test () ;
ob.test (10, 20);
ob.test (1) ;
ob.test (123.2);

"4 D)

"t a);

// this will invoke test (double)
// this will invoke test (double)

[Type text]

Page 20

This program generates the following output:

No parameters
a and b: 10 20
Inside test (double) a: 88.0
Inside test (double) a: 123.2

Overloading Constructors
Java supports Constructor Overloading in addition to overloading methods. In Java,

overloaded constructor is called based on the parameters specified when a new is executed.

/* Here, Box defines three constructors to initialize
the dimensions of a box various ways.
*/
class Box {
double width;
double height;
double depth;

// constructor used when all dimensions specified
Box (double w, double h, double d) {

width = w;
height = h;
depth = d;

}

// constructor used when no dimensions specified

Box () |
width = -1; // use -1 to indicate
height = -1; // an uninitialized

depth = -1; // box
}

// constructor used when cube is created
Box (double len) {

width = height = depth = len;
}

// compute and return volume
double volume () {

return width * height * depth;
}

class OverloadCons {
public static void main (String[] args) {
// create boxes using the various constructors
Box myboxl = new Box (10, 20, 15);
Box mybox2 = new Box();
Box mycube = new Box(7);

[Type text] Page 21

https://www.geeksforgeeks.org/new-operator-vs-newinstance-method-java/

double vol;

// get volume of first box
vol = myboxl.volume () ;
System.out.println ("Volume of myboxl is " + vol);

// get volume of second box
vol = mybox2.volume () ;
System.out.println ("Volume of mybox2 is " + vol);

// get volume of cube
vol = mycube.volume () ;
System.out.println ("Volume of mycube is " + vol);

}

The output produced by this program is shown here:

Volume of myboxl is 3000.0
Volume of mybox2 is -1.0
Volume of mycube is 343.0

Using Objects as Parameters

// Objects may be passed to methods.
class Test {
int a, b;

Test (int i, int Jj) {
a = i;
b = 7;

}

// return true if o is equal to the invoking object
boolean equalTo(Test o) |

if(o.a == a && o.b == b) return true;

else return false;

class PassOb {
public static void main(String[] args) {
Test obl = new Test (100, 22);
Test ob2 = new Test (100, 22);
Test ob3 = new Test (-1, -1);

System.out.println ("obl == ob2: " + obl.equalTo (ob2));
System.out.println ("obl == ob3: " + obl.equalTo (0b3));

}
This program generates the following output:

obl == ob2: true
obl == ob3: false

[Type text] Page 22

The equalTo() method inside Test compares two objects for equality and returns the result. That is, it
compares the invoking object with the one that it is passed. If they contain the same values, then the method
returns true. Otherwise, it returns false. Notice that the parameter o in equalTo() specifies Test as its
type. Although Test is a class type created by the program, it is used in just the same way as Java’s built-in

types.

One of the most common uses of object parameters involves constructors. Frequently, you will want to
construct a new object so that it is initially the same as some existing object. To do this, you must define a
constructor that takes an object of its class as a parameter.

For example, the following version of Box allows one object to initialize another:

// Here, Box allows one object to initialize another.

class Box {
double width;
double height;
double depth;

// Notice this constructor. It takes an object of type Box.
Box (Box ob) { // pass object to constructor

width = ob.width;

height = ob.height;

depth = ob.depth;
}

// constructor used when all dimensions specified
Box (double w, double h, double d) {

width = w;

height = h;

depth = d;
}

// constructor used when no dimensions specified

Box () {
width = -1; // use -1 to indicate
height = -1; // an uninitialized

depth = -1; // box
}

// constructor used when cube is created
Box (double len) {

width = height = depth = len;
}

// compute and return volume
double volume () {
return width * height * depth;

[Type text] Page 23

}

class OverloadCons2 {
public static void main (String[] args) {
// create boxes using the various constructors
Box myboxl = new Box (10, 20, 15);
Box mybox2 = new Box();
Box mycube = new Box(7);

Box myclone = new Box (myboxl); // create copy of myboxl
double vol;

// get volume of first box
vol = myboxl.volume () ;
System.out.println ("Volume of myboxl is " + vol);

// get volume of second box
vol = mybox2.volume () ;
System.out.println ("Volume of mybox2 is " + vol);

// get volume of cube
vol = mycube.volume () ;
System.out.println ("Volume of cube is " + vol);

// get volume of clone
vol = myclone.volume () ;
System.out.println ("Volume of clone is " + vol);

}

Argument Passing

There are two ways that a computer language can pass an argument to a subroutine.

The first way is call-by-value. This approach copies the value of an argument into the formal parameter of the
subroutine. Therefore, changes made to the parameter of the subroutine have no effect on the argument.

The second way an argument can be passed is call-by- reference. In this approach, a reference to an argument (not
the value of the argument) is passed to the parameter. Inside the subroutine, this reference is used to access the
actual argument specified in the call. This means that changes made to the parameter will affect the argument
used to call the subroutine.

When you pass a primitive type to a method, it is passed by value. Thus, a copy of the argument is made, and what
occurs to the parameter that receives the argument has no effect outside the method.

For example, consider the following program:

[Type text] Page 24

// Primitive types are passed by value.
class Test {
void meth(int i, int j) |
i *= 2;
j /= 2;

class CallByValue {
public static void main(String[] args) {
Test ob = new Test ();

int a = 15, b = 20;

System.out.println("a and b before call: " +
a+ "My b);:

ob.meth(a, b);

System.out.println("a and b after call: " +
a+ " " + b);

The output from this program is shown here:

a and b before call: 15 20
a and b after call: 15 20

Java Program for Objects are passed through their references.

class Test {
int a, b;

Test (int i, int j) |
a = 1i;
b = 3;

}

// pass an object
void meth (Test o) {

*=

O.a
o.b /

2;
2;

class PassObjRef {
public static void main(String[] args) {
Test ob = new Test (15, 20);

System.out.println("ob.a and ob.b before call: " + ob.a + " " + ob.b);
ob.meth (ob) ;
System.out.println("ob.a and ob.b after call: " + ob.a + " " + ob.b);

}

[Type text] Page 25

This program generates the following output:

ob.a and ob.b before call: 15 20
ob.a and ob.b after call: 30 10

Returning Objects

A method can return any type of data, including class types that you create. For example, in the
following program, the incrByTen() method returns an object in which the value of a is ten greater

than it is in the invoking object.

// Returning an object.

class Test {
int a;

Test (int 1) {
a = 1i;

}

Test incrByTen () {
Test temp = new Test (a+10);
return temp;
}
}

class RetOb {
public static void main(String[] args) {
Test obl = new Test(2);
Test ob2;

ob2 = obl.incrByTen();
System.out.println("obl.a: " + obl.a);
System.out.println("ob2.a: " + ob2.a);

ob2 = ob2.incrByTen() ;
System.out.println ("ob2.a after second increase: "+ ob2.a);
}
}

The output generated by this program is shown here:

obl.a: 2
ob2.a: 12
ob2.a after second increase: 22

[Type text] Page 26

Recursion

Recursion is the process of defining something in terms of itself. As it relates to Java programming, recursion is the
attribute that allows a method to call itself. A method that calls itself is said to be recursive.
The classic example of recursion is the computation of the factorial of a number. The factorial of a number N is the
product of all the whole numbers between 1 and N.
For example, 3 factorial is 1 x 2 x 3 x, or 6. Here is how a factorial can be computed by use of a recursive
method:

// A simple example of recursion.

class Factorial {

// this is a recursive method

int fact (int n) {
int result;

if (n==1) return 1;
result = fact(n-1) * n;
return result;

}

class Recursion {
public static void main (String[] args) {
Factorial f = new Factorial();

System.out.println ("Factorial of 3 is " + f.fact(3));
System.out.println ("Factorial of 4 is " + f.fact(4));
System.out.println ("Factorial of 5 is " + f.fact(5));

The output from this program is shown here:

Factorial of 3 is 6
Factorial of 4 is 24
Factorial of 5 is 120

[Type text] Page 27

Here is one more example of recursion. The recursive method printArray() prints the
first i elements in the array values.

// Another example that uses recursion.

class RecTest {
int[] values;

RecTest (int 1) |
values = new int[i];

}

// display array -- recursively
void printArray(int i) {
if (i==0) return;
else printArray(i-1);
System.out.println("[" + (i-1) + "] " + values[i-1]);

}
class Recursion2?2 {
public static void main (String[] args) {
RecTest ob = new RecTest (10);
int 1i;
for (i=0; 1<10; i++) ob.values[i] = 1i;
ob.printArray(10);
}

This program generates the following output:

[0] O
[1] 1
[2] 2
[3] 3
[4] 4
[5] 5
[6] 6
[71 7
[81 8
[9] 9

Access Control

Encapsulation links data with the code that manipulates it. However, encapsulation provides another important
attribute: access control. Through encapsulation, you can control what parts of a program can access the members

of a class. By controlling access, you can prevent misuse.

[Type text] Page 28

Java’s access modifiers are public, private, and protected.

Java also defines a default access level.

protected applies only when inheritance is involved.

When a member of a class is modified by public, then that member can be accessed by any

other code. When a member of a class is specified as private, then that member can only be

accessed by other members of its class.

» Now you can understand why main() has always been preceded by the public modifier. It
is called by code that is outside the program—that is, by the Java run-time system. When no
access modifier is used, then by default the member of a class is public within its own package,
but cannot be accessed outside of its package. (Packages are discussed in Chapter 9.)

> to restrict access to the data members of a class—allowing access only through methods. Also,

there will be times when you will want to define methods that are private to a class.

YV YV

To understand the effects of public and private access, consider the following program:

/* This program demonstrates the difference between
public and private.
*/
class Test {
int a; // default access
public int b; // public access
private int c; // private access

// methods to access c

void setc(int i) { // set c's value
c = iy

}

int getc() { // get c's value
return c;

}

class AccessTest {
public static void main (String[] args) {
Test ob = new Test () ;

// These are OK, a and b may be accessed directly
ob.a = 10;
ob.b = 20;

// This is not OK and will cause an error
// ob.c = 100; // Error!

// You must access c¢ through its methods

ob.setc(100); // OK

System.out.println("a, b, and c: " + ob.a + " " +
ob.b + " " + ob.getc());

[Type text] Page 29

The following program demonstrates the improved Stack class. Try removing the
commented-out lines to prove to yourself that the stck and tos members are, indeed,
inaccessible.

class TestStack {
public static void main (String[] args) {
Stack mystackl = new Stack();
Stack mystack2 = new Stack();

// push some numbers onto the stack
for (int i=0; i<10; i++) mystackl.push(i);
for (int i=10; i<20; i++) mystack2.push (i) ;

// pop those numbers off the stack

System.out.println("Stack in mystackl:");

for(int i=0; 1i<10; i++)
System.out.println (mystackl.pop());

System.out.println ("Stack in mystack2:");

for(int i=0; 1i<10; i++)
System.out.println (mystack2.pop());

// these statements are not legal
// mystackl.tos = -2;
// mystack2.stck[3] = 100;

[Type text] Page 30

Understanding static

= Normally, a class member must be accessed only in conjunction with an object of
its class. However, it is possible to create a member that can be used by itself,
without reference to a specific instance.

= To create such a member, precede its declaration with the keyword static.

= When a member is declared static, it can be accessed before any objects of its
class are created, and without reference to any object.

= You can declare both methods and variables to be static. The most common
example of a static member is main(). main() is declared as static because it
must be called before any objects exist.
= Instance variables declared as static are, essentially, global variables. When
objects of its class are declared, no copy of a static variable is made. Instead, all
instances of the class share the same static variable.
Methods declared as static have several restrictions:

e They can only directly call other static methods of their class.
* They can only directly access static variables of their class.
* They cannot refer to this or super in any way. (The keyword super relates to

inheritance and is described in the next chapter.)

The following example shows a class that has a static method, some static variables, and a
static initialization block:

// Demonstrate static variables, methods, and blocks.
class UseStatic {

static int a = 3;

static int b;

static void meth (int x

{

)

System.out.println("x =" + x);
System.out.println("a =" + a);
System.out.println("b =" + Db);

}

static {
System.out.println ("Static block initialized.");
b=a* 4;

}

public static void main (String[] args) {
meth (42) ;
}

As soon as the UseStatic class is loaded, all of the static statements are run. First, a is
set to 3, then the static block executes, which prints a message and then initializes b to a*4
or 12. Then main() is called, which calls meth(), passing 42 to x. The three println()
statements refer to the two static variables a and b, as well as to the parameter x.

[Type text] Page 31

Here is the output of the program:

Static block initialized.

x = 42
a =3
b =12

Outside of the class in which they are defined, static methods and variables can be
used independently of any object. To do so, you need only specify the name of their class
followed by the dot operator. For example, if you wish to call a static method from outside
its class, you can do so using the following general form:

classname.method()

Here, classname is the name of the class in which the static method is declared. As you
can see, this format is similar to that used to call non-static methods through object-reference
variables. A static variable can be accessed in the same way—by use of the dot operator on
the name of the class. This is how Java implements a controlled version of global methods and
global variables.

Here is an example. Inside main(), the static method callme() and the static variable b
are accessed through their class name StaticDemo.

class StaticDemo {
static int a = 42;
static int b = 99;

static void callme () {
System.out.println("a =" + a);
}
}

class StaticByName {
public static void main(String[] args) {
StaticDemo.callme () ;
System.out.println("b = " + StaticDemo.b);
}

Here is the output of this program:

a = 42
b = 99

Introducing final

A field can be declared as final. Doing so prevents its contents from being modified, making
it, essentially, a constant. This means that you must initialize a final field when it is declared.
You can do this in one of two ways: First, you can give it a value when it is declared. Second,

[Type text] Page 32

you can assign it a value within a constructor. The first approach is probably the most
common. Here is an example:

final int FILE NEW = 1;
final int FILE OPEN = 2;
final int FILE SAVE = 3
final int FILE SAVEAS = 4;
final int FILE_QUIT = 5;

’

Subsequent parts of your program can now use FILE_OPEN, etc., as if they were constants,
without fear that a value has been changed. It is a common coding convention to choose all
uppercase identifiers for final fields, as this example shows.

In addition to fields, both method parameters and local variables can be declared final.
Declaring a parameter final prevents it from being changed within the method. Declaring a
local variable final prevents it from being assigned a value more than once.

The keyword final can also be applied to methods, but its meaning is substantially
different than when it is applied to variables. This additional usage of final is explained
in the next chapter, when inheritance is described.

Introducing Nested and Inner Classes

It is possible to define a class within another class; such classes are known as nested classes.
The scope of a nested class is bounded by the scope of its enclosing class. Thus, if class B is
defined within class A, then B does not exist independently of A. A nested class has access to
the members, including private members, of the class in which it is nested. However, the
enclosing class does not have access to the members of the nested class. A nested class that is
declared directly within its enclosing class scope is a member of its enclosing class. It is also
possible to declare a nested class that is local to a block.

There are two types of nested classes: static and non-static. A static nested class is one
that has the static modifier applied. Because it is static, it must access the non-static members
of its enclosing class through an object. That is, it cannot refer to non-static members of its
enclosing class directly.

The second type of nested class is the inner class. An inner class is a hon-static nested
class. It has access to all of the variables and methods of its outer class and may refer to them
directly in the same way that other non-static members of the outer class do.

The following program illustrates how to define and use an inner class. The class named
Outer has one instance variable named outer_x, one instance method named test(), and
defines one inner class called Inner.

// Demonstrate an inner class.
class Outer {
int outer x = 100;

void test () {
Inner inner = new Inner();
inner.display();

}
-

[Type text] Page 33

// this is an inner class
class Inner {
void display ()
System.out.println("display: outer x = " + outer x);

}

class InnerClassDemo {
public static void main(String[] args) {
Outer outer = new Outer();
outer.test () ;

}
Output from this application is shown here:

display: outer x = 100

In the program, an inner class named Inner is defined within the scope of class Outer.
Therefore, any code in class Inner can directly access the variable outer_x. An instance
method named display() is defined inside Inner. This method displays outer_x on the
standard output stream. The main() method of InnerClassDemo creates an instance of
class Outer and invokes its test() method. That method creates an instance of class Inner
and the display() method is called.

It is important to realize that an instance of Inner can be created only in the context of
class Outer. The Java compiler generates an error message otherwise. In general, an inner
class instance is often created by code within its enclosing scope, as the example does.

As explained, an inner class has access to all of the members of its enclosing class, but
the reverse is not true. Members of the inner class are known only within the scope of the
inner class and may not be used by the outer class. For example,

// This program will not compile.
class Outer {
int outer x = 100;

void test () {
Inner inner = new Inner();
inner.display () ;

}

// this is an inner class
class Inner {

int y = 10; // y is local to Inner

void display () {
System.out.println("display: outer x = " + outer x);

}

[Type text] Page 34

void showy () {
System.out.println(y); // error, y not known here!

}

class InnerClassDemo {
public static void main(String[] args) {
Outer outer = new Outer();
outer.test();

Here, y is declared as an instance variable of Inner. Thus, it is not known outside of that
class and it cannot be used by showy().

Although we have been focusing on inner classes declared as members within an outer
class scope, it is possible to define inner classes within any block scope. For example, you can
define a nested class within the block defined by a method or even within the body of a for
loop, as this next program shows:

// Define an inner class within a for loop.
class Outer {
int outer x = 100;

void test () {
for (int 1=0; 1<10; i++) {

class Inner {

void display () {
System.out.println("display: outer x = " + outer x);

}

}

Inner inner = new Inner();

inner.display () ;

class InnerClassDemo {
public static void main (String[] args) {
Outer outer = new Outer();
outer.test();

[Type text] Page 35

The output from this version of the program is shown here:
display: outer x = 100
display: outer x = 100
display: outer x = 100
display: outer x = 100
display: outer x = 100
display: outer x = 100
display: outer x = 100
display: outer x = 100
display: outer x = 100
display: outer x = 100

While nested classes are not applicable to all situations, they are particularly helpful when handling
events. We will return to the topic of nested classes in Chapter 25. There you will see how inner classes can be
used to simplify the code needed to handle certain types of events. You will also learn about anonymous inner
classes, which are inner classes that don’t have a name.

[Type text] Page 1

