s g:ﬁ; v B
s d
% ANSHAYA -
=/

Ve
< Tumkur s

\ i

INTITUTIONS
&
5 Approved by AICTE, New Delhi, Affiliated to VIU, Belagaavi, Recognised by GOK, {3 (‘c'*:]”u‘::’c‘}[‘“"
NBA Accredited (CSE) b i

Obalapura Post, Lingapura, Koratagere Road, Tumkur- 572 106, Karnataka

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

Notes of Lessons

for

THIRD SEMESTER

on

“Object Oriented Programming with JAVA”

[BCS306A]

Prepared by:

DR. CHAMPAKAMALA S
Professor and Head
Department of Artificial Intelligence and Data Science

Akshaya Institute of Technology, Tumkur

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

Module 1

Session 1

Object-Oriented Programming:

Object-oriented programming (OOP) is at the core of Java. c. Object-Oriented
Programming is a methodology or paradigm to design a program using classes
and objects. It simplifies the software development and maintenance by providing

some concepts:

Two Paradigms

All computer programs consist of two elements: code and data. Furthermore, a
program can be conceptually organized around its code or around its data. That
1s, some programs are written around “what 1s happening” and others are written
around “who is being affected.” These are the two paradigms that govern how a

program is constructed.

In procedural programming, the
program is divided into small parts
called functions.

Procedural programming follows
atop-down approach.

There is no access specifier in
procedural programming.

Adding new data and functions is not
easy.

Procedural programming does not
have any proper way of hiding data
soitis less secure.

In procedural programming,
overloading is not possible.

In object-oriented programming,
the program is divided into small
parts called objects.

Object-oriented programming
follows a bottom-up approach.

Object-oriented programming has
access specifiers like private, public,
protected, etc.

Adding new data and function is
easy.

Object-oriented programming
provides data hiding so it is more
secure.

Overloading is possible in object-
oriented programming.

AKSHAYA INSTITUTE OF TECHNOLOGY

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

In procedural programming, there is
no concept of data hiding and
inheritance.

In procedural programming, the
function is more important than the
data.

Procedural programming is based on
the unreal world.

Procedural programming is used for
designing medium-sized programs.

Procedural programming uses the
concept of procedure abstraction.

Code reusability absent in procedural
programming,

Examples: C, FORTRAN, Pascal,
Basic, etc.

Abstraction:

In object-oriented programming, the
concept of data hiding and
inheritance is used.

In object-oriented programming,
data is more important than
function.

Object-oriented programming is
based on the real world.

Object-oriented programming is
used for designing large and
complex programs.

Object-oriented programming uses
the concept of data abstraction.

Code reusability present in object-
oriented programming.

Examples: C++, Java, Python, C#,
etc.

Abstraction in Java is a process of hiding the implementation details from the user
and showing only the functionality to the user. It can be achieved by using abstract
classes, methods, and interfaces. An abstract class is a class that cannot be
instantiated on its own and is meant to be inherited by concrete classes.

The Three OOP Principles:

1. Encapsulation: Encapsulation is the mechanism that binds together
code and the data it manipulates, and keeps both safe from outside

interference and misuse.

AKSHAYA INSTITUTE OF TECHNOLOGY

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

Public A Class

instance variables
(not recommended)

Public
methods

Private A A

methods

Private ‘ v
instance variables

2. Inheritance

Inheritance is the process by which one object acquires the properties of
another object.

AKSHAYA INSTITUTE OF TECHNOLOGY

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

Animal

Z N

Mammal Reptile.,

£ %

Canune Feline...

L

Domesticus Lupus...

"

Retriever Poodle..

/ N\

Labrador Golden

3.Polymorphism
Polymorphism (from Greek, meaning “many forms”) is a feature that
allows one interface to be used for a general class of actions.

Lexical Issues

Whitespace

e Java is a free-form language. This means that you do not need to
follow any special indentation rules.

e For instance, the Example program could have been written all on
one line or in any other strange way you felt like typing it, as long
as there was at least one whitespace character between each token
that was not already delineated by an operator or separator.

e In Java, whitespace includes a space, tab, newline, or form feed.

Identifiers
e |dentifiers are used to name things, such as classes, variables, and
methods.

e An identifier may be any descriptive sequence of uppercase and
lowercase letters, numbers, or the underscore and dollar-sign
characters. (The dollar sign character is not intended for general
use.)

e They must not begin with a number, lest they be confused with a
numeric literal. Again, Java is case sensitive, so value is a different
identifier than value .

AKSHAYA INSTITUTE OF TECHNOLOGY

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

AvgTemp

count

ad ’ Stest l this_is ok

[ovalid identifier nanmes include these:

Literals

| 2count

high-temp | Not/ok I

A constant value in Java is created by using a literal representation of
it.For example:

100

98.6 X' “This is a test”

Comments:

There are the comment line,single line and multi line documentation comments.

Separators

In Java, there are a few characters that are used as separators. The most
commonly used separator in Java is the semicolon. As you have seen, it is
often used to terminate statements. The separators are shown in the following

table:
Symbol | Name Purpose
() Parentheses | Used to contain lists of parameters in method definition and invocation.
Also used for defining precedence in expressions, containing
expressions in control statements, and surrounding cast types.
{} Braces Used to contain the values of automatically initialized arrays. Also
used to define a block of code, for classes, methods, and local scopes.
[] Brackets Used to declare array types, Also used when dereferencing array values.
; Semicolon | Terminates statements.
' Comma Separates consecutive identifiers in a variable declaration. Also used
to chain statements together inside a for statement.
Period Used to separate package names from subpackages and classes. Also
used to separate a variable or method from a reference variable.
Colons Used to create a method or constructor reference,
Ellipsis Indicates a variable-arity parameter.
@ At-sign Begins an annotation.

AKSHAYA INSTITUTE OF TECHNOLOGY

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

The Java Keywords
There are 67 keywords currently defined in the Java language.These

foundation of the Java language.

Review Questions:
1.

keywords, combined with the syntax of the operators and separators, form the

abstract assert boolean break byte case
catch char class const continue default
do double else enum exports extends
final finally float for goto if
implements | import instanceof int interface long
module native new non-sealed open opens
package permits private protected provides public
record requires return sealed short static
strictfp super switch synchronized | this throw
throws to transient transitive try uses
var void volatile while with yield

What is an object?

What is abstraction?

2. What are two types of programming approaches?
3. Mention three principles of oops with java?

4.

5. Mention the lexical issues?

AKSHAYA INSTITUTE OF TECHNOLOGY

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

Session 2
Data Types, Variables, and Arrays

The Primitive Types

Java defines eight primitive types of data: byte, short, int, long, char, float,
double, and boolean.

« Integers This group includes byte, short, int, and long, which are for

whole-valued signed numbers.

« Floating-point numbers This group includes float and double, which

represent numbers with fractional precision.

« Characters This group includes char, which represents symbols in a

character set, like letters and numbers.

« Boolean This group includes boolean, which is a special type for
representing true/false values.

Integers
Java defines four integer types: byte, short, int, and long. All of these are

signed, positive and negative values. Java does not support unsigned, positive-
only integers.

The width of an integer type should not be thought of as the amount
of storage it consumes, but rather as the behavior it defines for variables and
expressions of that type. The Java run-time environment is free to use
whatever size it wants, as long as the types behave as you declared them. The
width and ranges of these integer types vary widely, as shown in this table.

| Name | Width Range
long | 64 -9,223,372,036,854,775,808 t0 9,223,372,036,854,775,807
it | R 2,147,483,648 to 2,147,483,647
short | 16 -32,768 to 32,767
byte | 8 128t0 127

byte

The smallest integer type is byte. This is a signed 8-bit type that has a range
from —128 to 127.

Byte variables are declared by use of the byte keyword. For example, the
following declares two byte variables called b and c: byte b,c;

AKSHAYA INSTITUTE OF TECHNOLOGY

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

short
short is a signed 16-bit type. It has a range from —32,768 to 32,767. It is probably
the least-used Java type. Declaration:

short s;

short t;

int

The most commonly used integer type is int. It is a signed 32-bit type that has a
range from —2,147,483,648 to 2,147,483,647. In addition to other uses, variables
of type int are commonly employed to control loops and to index arrays.
Although you might think that using a byte or short would be more efficient than
using an int in situations in which the larger range of an int is not needed, this

may not be the case. The reason is that when byte and short values are used in
an expression, they are promoted to int when the expression is evaluated.

lon

Iong?is a signed 64-bit type and is useful for those occasions where an int type is
not large enough to hold the desired value. The range of a long is quite large. This
makes it useful when big, whole numbers are needed. For example, here is a
program that computes the number of miles that light will travel in a specified
number of days:

AKSHAYA INSTITUTE OF TECHNOLOGY

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

‘/ Compute distance light travels using long var-ables.
xlass Light |
public static void main(Stringl] args) {
int lightspeed;
1ong days;
long seconds;
long distance;

// approximate speed of l:ight in miles per second
lightspeed = 186000;

dave = 1000; // especify number of days here

seconds = days * 24 * G0 * 60; // convert to second:s
digtance = lightspeed * geconds: // compute distance
System.out.print("In " + days),

System.out.print (" days light will travel about "|;
System.out.printlni{distance + " wiles.");

I'his program generates the following output:

M 1000 Azsas Tichk- w77 tvawel zheut 1AOTCACOOON02Y milea,

Floating-Point Types
Floating-point numbers, also known as real numbers, are used when evaluating

expressions that require fractional precision. There are two kinds of floating-point
types, float and double, which represent single- and double-precision numbers,
respectively. Their width and ranges are shown here:

Name Width in Bits Approximate Range

double 64 4.9¢-324 to 1.8e+308

float 32 1.4e-045 to 3.4e+038
float

The type float specifies a single-precision value that uses 32 bits of storage.
Single precision is faster on some processors and takes half as much space as
double precision, but will become imprecise when the values are either very large
or very small. Variables of type float are useful when you need a fractional

AKSHAYA INSTITUTE OF TECHNOLOGY

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

component, but don’t require a large degree of precision. For example, float can
be useful when representing dollars and cents.

Here are some example float variable declarations:

float hightemp,lowtemp;

double
Double precision, as denoted by the double keyword, uses 64 bits to store a value.
Double precision is actually faster than single precision on some modern
processors that have been optimized for high-speed mathematical calculations.
All transcendental math functions, such as sin(), cos(), and sqrt(), return double
values. When you need to maintain accuracy over many iterative calculations, or
are manipulating large-valued numbers, double is the best choice.
Here is a short program that uses double variables to compute the area of a circle:
// Compute the area of a circle.
class Area ({
public sta
o

tic void main(String([] args) {
double vi, r, a;
r = 10.8; // radiue of cizxcle
pi = 3.1416; // pi, approximately
a=pi*¥yr *r; [/ compute area
System.out.printiln("Area of circle is " + a);
Characters

In Java, the data type used to store characters is char. A key point to understand
is that Java uses Unicode to represent characters. Unicode defines a fully
international character set that can represent all of the characters found in all
human languages.. At the time of Java’s creation, Unicode required 16 bits. Thus,
in Java char is a 16-bit type. The range of a char is 0 to 65,535. There are no
negative chars.

Here is a program that demonstrates char variables:

AKSHAYA INSTITUTE OF TECHNOLOGY

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

// Demons:trate char data type.
class CharDemo {
public static void main(Stringl] args)
char chil, chz;

chl 88; // code for X
el & Pl

System.out.print ("chl and ch2: ");
System.out .println(chl + " " + ch2);

This program displays the following output:

chl arnd gh2: ¥ ¥

Notice that chl is assigned the value 88, which is the ASCII (and Unicode) value
that corresponds to the letter X. As mentioned, the ASCII character set occupies
the first 127 values in the Unicode character set.

Although char is designed to hold Unicode characters, it can also be used as an
integer type on which you can perform arithmetic operations. For example, you
can add two characters together, or increment the value of a character variable.

Consider the following program:

// char variables behave like integers.
class CharDemo2 ({
public static void main(sString[] args)
char chl;

chl = ‘X';
System.out .printin{("chl contains " + chl);

chl++; // increment chi
System.out.println("chl is now " + chl);

AKSHAYA INSTITUTE OF TECHNOLOGY

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

Booleans

Java has a primitive type, called boolean, for logical values. It can have only one
of two possible values, true or false. This is the type returned by all relational
operators, as in the case of a < b. Boolean is also the type required by the
conditional expressions that govern the control statements such as if and for.
Here is a program that demonstrates the boolean type

/! Demonstrate boolezan values.
clasz BoolTeast |

public statiec void main(Stringf] args) {
hoolean by
h = falze;
Eyetem.cut.println(®"b is " « b):
h = trus;
Syntom. sut . .printin(th ic L)

// a2 boolean value carn contysl the if statement

if(b) Svstem.out.println(“This is executed.");

= Zalse;
£(b) Svstem.cut.println("This is not executed.");

ju]
3
-

// outecome of & relational operator is a boclezn valu
Syvatem.out..printlni*l0 > 9 ia " + (10 > 9});

The output generated by this program is shown here:

Variables

The variable is the basic unit of storage in a Java program. A variable is defined
by the combination of an identifier, a type, and an optional initializer. In addition,
all variables have a scope, which defines their visibility, and a lifetime.

Declaring a Variable
In Java, all variables must be declared before they can be used. The basic form of
a variable declaration is shown here:

type identifier [= value][, identifier [=value] ...];

AKSHAYA INSTITUTE OF TECHNOLOGY

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

Here, type is one of Java’s atomic types, or the name of a class or interface. The
identifier is the name of the variable. You can initialize the variable by specifying
an equal sign and a value. Keep in mind that the initialization expression must
result in a value of the same (or compatible) type as that specified for the variable.
To declare more than one variable of the specified type, use a comma-separated
list.

Here are several examples of variable declarations of various types. Note that
some include an initialization.

int a, b, ¢; // declares three ints, a, b, and ¢

intd= 3, e, £f=25; // declares three more ints, initializing
and §

byte 2 = 22; // initializes z.

double pi = 3,14159; // declares an approximation of pi.

char x = 'x'; // the variable x has the value 'x'.

Type Conversion and Casting

Java’s Automatic Conversions

When one type of data is assigned to another type of variable, an automatic type
conversion will take place if the following two conditions are met:

* The two types are compatible.

* The destination type is larger than the source type.

When these two conditions are met, a widening conversion takes place. For
example, the int type is always large enough to hold all valid byte values, so no
explicit cast statement is required.

For widening conversions, the numeric types, including integer and floating-point
types, are compatible with each other. However, there are no automatic
conversions from the numeric types to char or boolean. Also, char and boolean
are not compatible with each other.

Casting Incompatible Types

To create a conversion between two incompatible types, you must use a cast. A
cast is simply an explicit type conversion. It has this general form:

(target-type) value

Here, target-type specifies the desired type to convert the specified value to. For
example, the following fragment casts an int to a byte.

If the integer’s value is larger than the range of a byte, it will be reduced modulo
(the remainder of an integer division by the) byte’s range.

inta; byte b; // ... b = (byte) a;

A different type of conversion will occur when a floating-point value is assigned
to an integer type: truncation. As you know, integers do not have fractional

AKSHAYA INSTITUTE OF TECHNOLOGY

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

components. Thus, when a floating-point value is assigned to an integer type, the
fractional component is lost. For example, if the value 1.23 is assigned to an
integer, the resulting value will simply be 1. The 0.23 will have been truncated.
Of course, if the size of the whole number component is too large to fit into the
target integer type, then that value will be reduced modulo the target type’s range.
The following program demonstrates some type conversions that require casts:

/! Demonstiracc casls.
class Convsxsion |
public ctazic void main{string(] aracs)

byte b;
int 1 = 28%;
double d = 322.142;
System._oul .printiln{"\nConversion of int Lo bvle.'):
b = (byte) i;
System.out.printini"i and b " - i + * " & b};
System.out .printlin("\nConversion of cdouble to int."};
i = (int) 4d;
System.out .printin("d and i " - 4 + * " 4+ i}
Syztem.oul ..printin("\nConversion of double Lo bylLe.");
b = (hyte) 4;
System.out .printin("d and b " <+ d 4+ " " + b]

This program generates the tollowing output:

conversion o int to byte.,
iard = 257 1

Conversion of double to int.

dandi 323.142 323
Conversion of double to byte.
d and b 323.142 67

Automatic Type Promotion in Expressions

In addition to assignments, there is another place where certain type conversions
may occur: in expressions. To see why, consider the following. In an expression,
the precision required of an intermediate value will sometimes exceed the range
of either operand. For example, examine the following expression:

byte a = 40;

byte b = 50;

byte ¢ = 100;

AKSHAYA INSTITUTE OF TECHNOLOGY

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

intd=a*b/c;

The result of the intermediate term a * b easily exceeds the range of either of its
byte operands. To handle this kind of problem, Java automatically promotes each
byte, short, or char operand to int when evaluating an expression. This means
that the subexpression a*b is performed using integers—not bytes. Thus, 2,000,
the result of the intermediate expression, 50 * 40, is legal even though a and b
are both specified as type byte.

As useful as the automatic promotions are, they can cause
confusing compile-time errors. For example, this seemingly correct code causes
a problem:

byte b = 50;
b =b*2;// Error! Cannot assign an int to a byte!

The code is attempting to store 50 * 2, a perfectly valid byte
value, back into a byte variable. However, because the operands were
automatically promoted to int when the expression was evaluated, the result has
also been promoted to int. Thus, the result of the expression is now of type int,
which cannot be assigned to a byte without the use of a cast. This is true even if,
as in this particular case, the value being assigned would still fit in the target type.
In cases where you understand the consequences of overflow, you should use an
explicit cast, such as

byte b = 50;
b = (byte)(b * 2);
which yields the correct value of 100.

Review Questions:

1. What are data types?
What are variables?
What is type casting and type conversion?
Mention two types of conversions?
Give the syntax for declaring a variable?
Define scope of variables?

ok wn

AKSHAYA INSTITUTE OF TECHNOLOGY

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

Session 3
Arrays

An array is a group of like-typed variables that are referred to by a common name.
Arrays of any type can be created and may have one or more dimensions. A
specific element in an array is accessed by its index.

One-Dimensional Arrays

A one-dimensional array is, essentially, a list of like-typed variables. To create
an array, you first must create an array variable of the desired type. The general
form of a one-dimensional array declaration is

type[] var-name;

Here, type declares the element type (also called the base type) of the array. The
element type determines the data type of each element that comprises the array.
Thus, the element type for the array determines what type of data the array will
hold. For example, the following declares an array named month_days with the
type “array of int”:

int[] month_days;

New is a special operator that allocates memory.

The general form of new as it applies to one-dimensional arrays appears as
follows:

array-var = new type [size];

Here, type specifies the type of data being allocated, size specifies the number of
elements in the array, and array-var is the array variable that is linked to the array.
That is, to use new to allocate an array, you must specify the type and number of
elements to allocate. The elements in the array allocated by new will
automatically be initialized to zero (for numeric types), false (for boolean), or
null. This example allocates a 12-element array of integers and links them to
month_days:

month_days = new int[12];

AKSHAYA INSTITUTE OF TECHNOLOGY

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

After this statement executes, month_days will refer to an array of 12 integers.
Further, all elements in the array will be initialized to zero.

Let’s review: Obtaining an array is a two-step process. First, you must declare a
variable of the desired array type. Second, you must allocate the memory that will
hold the array, using new, and assign it to the array variable. Thus, in Java all
arrays are dynamically allocated. If the concept of dynamic allocation is
unfamiliar to you, don’t worry. It will be described at length later in this book.
Once you have allocated an array, you can access a specific element in the array
by specifying its index within square brackets. All array indexes start at zero. For
example, this statement assigns the value 28 to the second element of
month_days:

month_days[1] = 28;
The next line displays the value stored at index 3:
System.out.printin(month_days[3]);

Putting together all the pieces, here is a program that creates an array of the
number of days in each month:

// Demonstrate a one-dimensional array.

class Array |

public static void main{sScringl] args) |
int [] month days;

month days = new int[12];

month days (0] = 31;
mnnth_rdaya(1] = 28;
month days (2] = 31;
month_days (3] = 30;
month days(4] = 31;

month_days (5] = 30;

month days (6] 31;

menth days[7] Fl;

menth days[8] = 30;

month dayvs[9] = 31;

month days [10] 30;

menth_days [11] = 31;

System.out .println("April has " + month days[3] + " days.");:

AKSHAYA INSTITUTE OF TECHNOLOGY

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

When you run this program, it prints the number of days in April. As mentioned,
Java array indexes start with zero, so the number of days in April is
month_days[3] or 30.

It is possible to combine the declaration of the array variable with the allocation
of the array itself, as shown here:

int[] month_days = new int[12];

Multidimensional Arrays

In Java, multidimensional arrays are implemented as arrays of arrays. To declare
a multidimensional array variable, specify each additional index using another set
of square brackets. For example, the following declares a two-dimensional array
variable called twoD:

int[][] twoD = new int[4][5];

This allocates a 4 by 5 array and assigns it to twoD. Internally, this matrix is
implemented as an array of arrays of int. Conceptually, this array will look like
the one shown in figure:

;ﬁ.ﬁﬁ%wﬁﬁwm&a&%
o e

e e 1.11(]] [EEN) R I RET T

i

el o
| \?{\ LT | T E{%:[EEEJ EafEa] [EAfey

13‘\\ : : .] .
R |) B0 | T 0

hemetes [T 70 bt e mome S BH1TRL 2
FIGURE: A conceptual view of a 4 by 5, two-dimensional array

AKSHAYA INSTITUTE OF TECHNOLOGY

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

Introduction Type Inference with Local VVariables

A new feature called local variable type inference was added to the Java
language. To begin, let’s review two important aspects of variables. First, all
variables in Java must be declared prior to their use. Second, a variable can be
initialized with a value when it is declared. Furthermore, when a variable is
initialized, the type of the initializer must be the same as (or convertible to) the
declared type of the variable. Thus, in principle, it would not be necessary to
specify an explicit type for an initialized variable because it could be inferred by
the type of its initializer. Of course, in the past, such inference was not
supported, and all variables required an explicitly declared type, whether they
were initialized or not.

To use local variable type inference, the variable must be declared withvar
as the type name and it must include an initializer. For example, in the past you
would declare a local double variable called avg that is initializedwith the value
10.0, as shown here:

double avg = 10.0;

Using type inference, this declaration can now also be written like this:
var avg = 10.0;

In both cases, avg will be of type double. In the first case, its type
Is explicitly specified. In the second, its type is inferred as double because the
initializer 10.0 is of type double.

As mentioned, var is context-sensitive. When it is used as the type
name in the context of a local variable declaration, it tells the compilerto use
type inference to determine the type of the variable being declared based on the
type of the initializer. Thus, in a local variable declaration, varis a placeholder
for the actual, inferred type. However, when used in most other places, var is
simply a user-defined identifier with no special meaning. For example, the
following declaration is still valid:

int var = 1; // In this case, var is simply a user-defined
identifier.

In this case, the type is explicitly specified as int and var is the name of the
variable being declared. Even though it is context-sensitive, there are a few
places in which the use of var is illegal. It cannot be used as the name of a class,
for example.

AKSHAYA INSTITUTE OF TECHNOLOGY

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

/! A gimple demonstraticon of local variable type inference.
class VarDemo |
public statie weid main(String[] args) |

/{ Use type inference to determine the type of the
ff wariable named avg. In this case, double ig inferred.
var avg = 10.0;

Bystem.out . praintlni®*Value of avg: " + avg);

J/ In the following context, war iz not a predefined idencifier.
J0It ig simply a uger-defined variable name.

int var = 1;

System.out . printlni*Value of wvar: " + var);

[{ Interestingly, in the following segquence, var is used

/{ as both the type of the declaration and as a variable name
/f in the initializer.

var k = -var;

System.out.println("Value of k: " + k);

Llere i the output:

Ya—ue of awsr 0.0
va_ue of wars L
va_ue of o -L

The preceding example uses var to declare only simple variables, but you can
also use var to declare an array. For example:

var myArray = new int[10]; // This is valid.

Notice that neither var nor myArray has brackets. Instead, the type of
myArray is inferred to be int[]. Furthermore, you cannot use brackets on the
left side of a var declaration. Thus, both of these declarations are invalid:

AKSHAYA INSTITUTE OF TECHNOLOGY

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

Operators

Java provides a rich operator environment. Most of its operators can be
divided into the following four groups: arithmetic, bitwise, relational, and
logical.

Arithmetic Operators

Arithmetic operators are used in mathematical expressions in the same way
that they are used in algebra. The following table lists the arithmetic operators.

Operator Result

+ Addition {also unary plus)

- Subtraction (also unary minus)

Multiplication

/ Division

% Modulus

++ Increment

4= Addition assignment

- Subtraction assignment

= Multiplication assignment

f= Division assignment

%= Modulus assignment

- = Decrement

Program to demonstrate different type of operators
/[This program explains about operator
public class Operator {
public static void main(String[] args) {
int a=10,b=20;
System.out.printin(a==b);
System.out.printin(a!=b);
System.out.printin(a>b);
System.out.printin(a<b);

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

System.out.println(a<=b);
System.out.printin(a>=b);
System.out.printin(a==b && al=b);
System.out.printin(a==Db || a!=b);
System.out.printin(!(a>b));
System.out.printIn(a--);
System.out.printIn(++a);
System.out.printin(a++);

System.out.printIn(++a);

¥

Arithmetic Assignment Operators
Java provides special operators that can be used to combine an arithmetic
operation with an assignment

a=a+4;

In Java, you can rewrite this statement as shown here:

a+=4,

This version uses the += compound assignment operator. Both statements
perform the same action. There are compound assignment operators for all of
the arithmetic, binary operators. Thus, any statement of the form

var = var op expression; can be rewritten as var op= expression;

The compound assignment operators provide two benefits. First, they save you
a bit of typing, because they are “shorthand” for their equivalent long forms.
Second, in some cases they are more efficient than are their equivalent long
forms.

Here is a sample program that shows several op = assignments in action:

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

// PDemonstrate several assignment operators.
class OpEgquals
public static void main(Stringl] args)
int a = 1;
int b - 2:;
int ¢ = 3;

a - S

b "« 4;

C += a * b;

C = 6;

System.out.printlin(*a = " + a);
System.out.println("b = " + b);
System.out.println("c = + C)3;

The output of this program is shown here:

W oo

OoD

Review questions:
1. Define Arrays?
2. Mention two types of arrays?
3. What is variable type inference?
4. Mention different arithmetic operators?
5. What is assignment operator?

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

Session 4
Relational Operators
The relational operators determine the relationship that one operand has to the

other. Specifically, they determine equality and ordering. The relational

operators are shown here

Operator Result

S Equal to

= Not equal to

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to

The outcome of these operations is a Boolean value. The relational operators
are most frequently used in the expressions that control the if statement and

the various loop statements
Boolean Logical Operators

The Boolean logical operators shown here operate only on Boolean operands.
All of the binary logical operators combine two Boolean values to form a

resultant Boolean value.

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

& Logical AND

| Logical OR

A Logical XOR {exclusive OR)

Il Short-circuit OR

&& Short-circuit AND

: Logical unary NOT

&= AND assignment

|= OR assignment

Ae XOR assignment

‘Operator Result

== Equal to

= Not equal to

2 Ternary if-then-else
A 8 AB_ | Ass [ArB [w
False False False False False True
True False True False True False
False True True False Teue True
True True True True False False

// Demonstrate the booclean logical operators.
class Boollogic {
public static void main(String(] args) |{

boolean a = true;

boolean b = false;

boolean ¢ = a | b;

boolean d = a & b;

boolean e = a * b;

boolean £ = (!a & b) | (a & !b);
boolean g = !a;

System.out.printin(" as=" 4 a);
System.out .printin(" b="4+Db);
System.out.printin(* alb =" + ¢y
System.cut.println(* akb = " + d);
System.out.println(* a’b = " + e);
System.out .printin("!a&b|a&tb = " &+ £);
System.out.printin(" ta = " + g);

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

The output of the above program is:

a = true
b = false
alb = true
akbh = false
A
ap = Ltrue
la&b|a&!b = true
la = false

Short-Circuit Logical Operators

Java provides two interesting Boolean operators not found in some other
computer languages. These are secondary versions of the Boolean AND and
OR operators, and are commonly known as short-circuit logical operators. As
you can see from the preceding table, the OR operator results in true when A
Is true, no matter what B is. Similarly, the AND operator results in false when
A is false, no matter what B is. If you use the || and && forms, rather than the
| and & forms of these operators, Java will not bother to evaluate the right-
hand operand when the outcome of the expression can be determined by the
left operand alone. This is very useful when the right-hand operand depends
on the value of the left one in order to function properly. For example, the
following code fragment shows how you can take advantage of short-circuit
logical evaluation to be sure that a division operation will be valid before
evaluating it: if (denom != 0 && num / denom > 10) Since the short-circuit
form of AND (&&) is used, there is no risk of causing a run-time exception
when denom is zero. If this line of code were written using the single & version
of AND, both sides would be evaluated, causing a run-time exception when

demon is zero

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

The? Operator

Java includes a special ternary (three-way) operator that can replace certain
types of if-then-else statements. This operator is the ?.

expressionl ? expression2 : expression3
Here, expressionl can be any expression that evaluates to a boolean value. If

expressionl is true, then expression2 is evaluated; otherwise, expression3 is

evaluated.
{7/ Demonstrate ?
clasa Ternary |
public static void main(string(] args) {
int i, ki

1 = 10y

K'w i <D 7 o8 : &= /Y get abaolute value of 1
System.out.print ("Absolute value of *);
Syatem,out . printinfi + " ia " « k);

K=41i<0? -i 1 4; // ger absolute value of |
gyatem.out.print (*Absolute value of ");
System,out . .println(i +« " ig " + k),

The output generated by the program is shown here:

:;L'ﬁ-i'l..a!.‘- 'l'-‘;-l'-. '-'£ .l:' - ;l-l

Abaolure valus of <10 12 10

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

Operator Precedence

Table shows the order of precedence for Java operators, from highest to
lowest. Operators in the same row are equal in precedence. In binary
operations, the order of evaluation is left to right (except for assignment,

which evaluates right to left).

Highest
w4 posths] | = ={postfix)
#+ {prefi) - - {prefix] - ! + [onary) - (umary) |Eype-cast]
h
¥ B3 s |
> »= . <= instanceof
== !_.
R
il
I
i
pil
= n;l:
Lowest

Review Questions:
1. Give the different relational operators?
2. What are Boolean logical operators?
3. What is operator precedence?
4. Define ternary operator?
5. Define operator parentheses?

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

Session 5
Control Statements

A programming language uses control statements to cause the flow of
execution to advance and branch based on changes to the state of a program.
Java’s program control statements can be put into the following categories:

1. Selection

2. iteration

3. jump.
Selection statements allow your program to choose different paths of
execution based upon the outcome of an expression or the state of a variable.
Iteration statements enable program execution to repeat one or more
statements (that is, iteration statements form loops).

Jump statements allow your program to execute in a nonlinear fashion

Java’s Selection Statements

Java supports two selection statements: if and switch. These statements allow
you to control the flow of your program’s execution based upon conditions

known only during run time

If
if (condition) statementl;

else statement2;

boolean dataAvailable;

7 (O

1f (dataAvailable)
ProcessDatal() ;

else

waltForMoreDatal() ;

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

Nested ifs

A nested if is an if statement that is the target of another if or else. Nested ifs
are very common in programming. When you nest ifs, the main thing to
remember is that an else statement always refers to the nearest if statement

that is within the same block as the else and that is not already associated with

an else.
if(i == 10) {
1f{) < 20) a b;
if{k > 100) ¢ = d; // this if is
else a = ¢; // associated with this else
}
else a = d; // this else refers to if(i == 10)

The if-else-if Ladder

A common programming construct that is based upon a sequence of nested ifs
is the if-else-if ladder. It looks like this:

if(condition)

statement;

else if(condition)

statement;

else if(condition)

statement;

else

statement

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

// Demonstrate if-else-if statements.
class IfEBlse {
public static void main(String(] args) {
int month = 4; // April
String season;

1f (month =« 12 || month == 1 || month == 2)
season = "Winter";

else if(month == 3 || month == 4 || month == 5)
geason = "Spring";

else if{month == || month == 7 || month == 8)
season = "Summer";

else if(month «« 9 || month =« 10 || month =« 11)
season = "Autumn®;

else

geason = "Boaus Month";

System.out .printin{"April is in the " + season + "."};

}
i

Here is the output produced by the program:

The Traditional switch

The switch statement is Java’s multi way branch statement. It provides an
easyway to dispatch execution to different parts of your code based on the

value of an expression.

switch (expression) |
casc valuel:
// statement sequence
break:
casc value?:
[/ statement sequence

break:

casc valueN :
// statement sequence
break;

detault:

/! default statement sequence
1
L

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

The break statement is used inside the switch to terminate a statement

sequence. When a break statement is encountered, execution branches to the

first line of code that follows the entire switch statement

Il A

¢class SampleSwitch ¢

simple example of

|

public static veoid

for(int i=0;
switch(i)
case 0:

System

break;

case 1l:

System.o

break;

~m e 2.
case <:

System,

break;
case 3:

System,

break;
default:

System.ou

1B ;

{

.out .,

out.

Iteration Statements

out.jy

main(Scring|]

L44)

printin(

printin(’

g

.printin{

args) |{

zero.");

ocne.");

cEwo.");

three.");

greater than 3."%);

Java’s iteration statements are for, while, and do-while. These statements

create what we commonly call loops. As you probably know, a loop repeatedly

executes the same set of instructions until a termination condition is met.

while

The while loop is Java’s most fundamental loop statement. It repeats a

statement or block while its controlling expression is true. Here is its general

form:
while(condition) {
// body of loop

¥

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

Here is a while loop that counts down from 10, printing exactly ten lines
of "tick™

// Demonstrate the while lcop.
class While {
public static void main(String(] args) |
int n = 10;
while(n > 0) {
System.ocut.println("tick " + n);
N==j
}

}
f

When you run this program, it will “tick™ ten times:

-1 0O D

Review questions:

1.
2. What is traditional switch?

3. What are iteration statements?

4,

5. Give the General form of traditional switch statement?

Mention the different selection statement?

Give the general form of while statements?

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

Session 6
do-while

As you just saw, if the conditional expression controlling a while loop is
initially false, then the body of the loop will not be executed at all. However,
sometimes it is desirable to execute the body of a loop at least once, even if
the conditional expression is false to begin with. In other words, there are
times when you would like to test the termination expression at the end of the
loop rather than at the beginning. Fortunately, Java supplies a loop that does
just that: the do-while. The do-while loop always executes its body at least
once, because its conditional expression is at the bottom of the loop. Its
general form is

do{
// body of loop

} while (condition);
Each iteration of the do-while loop first executes the body of the loop and

then evaluates the conditional expression

// Demonstrate the do-while loop.
class DoWhile {

public static void main(String[] args) ({
int n = 10;
do |
System.out.println("tick " + n);
n--;

} while(n > 0);
}

}

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

For

for(initialization; condition; iteration) {
// body
}

// Demonstrate the for loop.
class ForTick {
public static void main(String(] args) |
int n;

for{ns10; n>0; n--)
System.out.println(*tick " + n);

// Using the comma.
class Comma {
public static void main(String[] args) {
int a, b;

for(a=1, b=4; a<b; a++, b--) {
System.out.println("a = " + a);
System.out.println("b = " + b);

}
}
}

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

The For-Each Version of the for Loop

A second form of for implements a “for-each” style loop. As you may know,
contemporary language theory has embraced the for-each concept, and it has
become a standard feature that programmers have come to expect. A for-each
style loop is designed to cycle through a collection of objects, such as an array,
in strictly sequential fashion, from start to finish. In Java, the for-each style of
for is also referred to as the enhanced for loop. The general form of the for-
each version of the for is shown here for (type itr-var : collection) statement-
block Here, type specifies the type and itr-var specifies the name of an
iteration variable that will receive the elements from a collection, one at a time,
from beginning to end. The collection being cycled through is specified by

collection

Use a for-~gach astyls for loop.
x

void main{stxingl) axrgs) |

T - 8
int{() nums « {1, 2, 3, 4, S5, & 7, 8, S5

une for-sach amtyle for t« dipplay and sum the values

The ouwrput from the program is shown here:

E L L)
aRe RN CEETE D

SRR
| S S S S

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

Iterating Over Multidimensional Arrays

// Use for-each style for on a two-dimensional array.
class ForBach3d |
public static void main(String(] args) {
int sum =« 0;
int[] [] nums » new int[3] [5];

// give nums some values
forfint i = 07 1 < 3; i+e)
for(int j « 0 j <« S5; jee)
nums [31] [§] = (Rel)=(je1);

// use for-esach for to display and sum the values
for(int(] x : numsa) (
for(int y 1 x) {
System.cut.println(*value is: “ « y);:
Sum +w= ¥y,
)
}

System.out .println(“Summation: * + sum);

// Using break to exit a loop.
class Breakloop |
public static void main(String[] args) |
for(int {=0; £<100; £++) {
if (i == 10) break; // terminate loop if i is 10
System.out.println("i: * + 1i);
}
System.out.println("Loop complete.");
}
I

This program generates the following output:

. .
Lanalil v

W

e
.
'

.
da

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

Using continue

Sometimes it is useful to force an early iteration of a loop. That is, you might
want to continue running the loop but stop processing the remainder of the
code in its body for this particular iteration. This is, in effect, a goto just past

the body of the loop, to the loop’s end. The continue statement performs such

an action
I Demonstrate continue,
class Continue |
public static void main(String(] args) |
for(int is=0; i<10; i++) |

System,out .print {i +
if (1%2 == 0) continue;
System.out.printlin("");

}

T'his code uses the % operator 1o check 1fi 1s even. If it 1s, the loop continues
without printing a newline. Here 1s the output from this program:

Return

The last control statement is return. The return statement is used to explicitly
return from a method. That is, it causes program control to transfer back to the

caller of the method.

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

// Demonstrate return.
class Return |

public static void main(String() args) |
boolean £t = true;

System.out.println("Before the return.");
if{t) return; // return to caller

System.out.printiln("This won't execute."):;

Review questions:

1. Give the general form for do while?

2. Give the general form for traditional for statement?
3. Mention the different jump statement?

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

© © N o o

12.
13.
14.

15.
16.
17.
18.
19.
20.

21.
22.
23.
24,
25.

MODULE-1

Explain how Object Oriented Programming model is different from Process/procedure driven
programming model?

Define the term ‘Abstraction” and how ‘abstraction’ applied to traditional computer programs?
Explain three OOP principles: Encapsulation, Inheritance and Polymorphism.
Explain the following with a suitable JAVA program segment.
a. Code blocks
b. Comments
c. Identifiers
d. Literals
Explain integer and Boolean data types in Java and their relevance in programming.
Explain floating point and character data types in Java and their usage in problem solving.
Define variable and dynamic initialization variables with syntax and examples in Java.
Define scope, scope types and lifetime of variables with respect to Java with suitable examples.

Explain automatic type conversion and explicit type conversion support in Java with suitable
examples.

. Explain automatic type promotion scenarios in Java with examples.
11.

Define array. Explain one dimensional array declaration and element access in Java with
examples.

Explain one dimensional array initialization with examples.
Explain declaration and initialization of multi-dimensional arrays in Java with code segments.

Explain the term ‘type inference’. Explain Java support and rules for type inference with suitable
examples.

Develop a Java program to compute the sum of three digit number.

Develop a program to create/initialize a Jagged array containing Floyd’s triangle.
Explain modulus and compound assignment operators with suitable Java code segments.
Explain the use of increment and decrement operators with suitable Java code segments.
List and explain, the role of relational operators in programming.

Explain the role of short-circuit logical operators in programming with suitable Java code
segments.

With syntax and example, explain the ternary (?) operator.

Develop a program to test the given number is odd or even.

Develop a program to the given number is positive and divisible by 5.

Explain with syntax and example, the structure if, nested if and if-else-if ladder.

Develop a program to find maximum among three numbers.

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

26.

27.
28.

29.
30.
31.

32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.

43.
44,
45,
46.

Develop a program to input electricity unit charges and calculate total electricity bill according
to the given condition:

For first 50 units Rs. 0.50/unit

For next 100 units Rs. 0.75/unit

For next 100 units Rs. 1.20/unit

For unit above 250 Rs. 1.50/unit

An additional surcharge of 20% is added to the bill
Develop a program to find all roots of a quadratic equation.

Explain traditional switch statement with an example. Highlight the role of break and default in
switch statement.

Develop a program to create Simple Calculator (+, -, X, /) using switch-case.
Develop a program print total number of days in a month using switch case.

Explain while and do-while statement with syntax and example. Highlight the similarity and
difference between while and do-while statement.

Develop a program to print Fibonacci series up to n terms.

Develop a program to check a given number is Armstrong or not.

Explain traditional for statement with syntax and example.

Develop a program to print all Perfect numbers between 1 to n.

Develop a program to print Pascal triangle upto n rows.

Explain for-each (enhance for) statement with syntax and example.

Develop a program to find sum and average of N items present in a array (use for-each).
Develop a program to create a matrix, print the matrix and find the row-sum (use for-each).
Explain the role of continue statement with an example.

Develop a program to find the sum of even numbers present in an array (use continue statement).

Explain the use of break statement, to exit a loop and as civilized goto statement with suitable
code segments/examples.

Develop a program to check a given number is prime or not (use break statement).
Explain the role of ‘return’ in Java with an example.
Develop a program to find the value of a/b. terminate the program on the value of b=0;

Develop a program to find a/b. Use guard expression (short-circuit operator) for b!=0.

