
DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

Notes of Lessons
for

THIRD SEMESTER

on

“Object Oriented Programming with JAVA”
[BCS306A]

Prepared by:

DR. CHAMPAKAMALA S

Professor and Head

Department of Artificial Intelligence and Data Science

Akshaya Institute of Technology, Tumkur

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

AKSHAYA INSTITUTE OF TECHNOLOGY

Module 1
Session 1

Object-Oriented Programming:

Object-oriented programming (OOP) is at the core of Java. c. Object-Oriented

Programming is a methodology or paradigm to design a program using classes

and objects. It simplifies the software development and maintenance by providing

some concepts:

Two Paradigms
All computer programs consist of two elements: code and data. Furthermore, a

program can be conceptually organized around its code or around its data. That

is, some programs are written around ―what is happening‖ and others are written

around ―who is being affected.‖ These are the two paradigms that govern how a

program is constructed.

In procedural programming, the

program is divided into small parts

called functions.

In object-oriented programming,

the program is divided into small

parts called objects.

Procedural programming follows

a top-down approach.

Object-oriented programming

follows a bottom-up approach.

There is no access specifier in

procedural programming.

Object-oriented programming has

access specifiers like private, public,

protected, etc.

Adding new data and functions is not

easy.

Adding new data and function is

easy.

Procedural programming does not

have any proper way of hiding data

so it is less secure.

Object-oriented programming

provides data hiding so it is more

secure.

In procedural programming,

overloading is not possible.

Overloading is possible in object-

oriented programming.

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

AKSHAYA INSTITUTE OF TECHNOLOGY

In procedural programming, there is

no concept of data hiding and

inheritance.

In object-oriented programming, the

concept of data hiding and

inheritance is used.

In procedural programming, the

function is more important than the

data.

In object-oriented programming,

data is more important than

function.

Procedural programming is based on

the unreal world.

Object-oriented programming is

based on the real world.

Procedural programming is used for

designing medium-sized programs.

Object-oriented programming is

used for designing large and

complex programs.

Procedural programming uses the

concept of procedure abstraction.

Object-oriented programming uses

the concept of data abstraction.

Code reusability absent in procedural

programming,

Code reusability present in object-

oriented programming.

Examples: C, FORTRAN, Pascal,

Basic, etc.

Examples: C++, Java, Python, C#,

etc.

Abstraction:

Abstraction in Java is a process of hiding the implementation details from the user

and showing only the functionality to the user. It can be achieved by using abstract

classes, methods, and interfaces. An abstract class is a class that cannot be

instantiated on its own and is meant to be inherited by concrete classes.

The Three OOP Principles:

1. Encapsulation: Encapsulation is the mechanism that binds together

code and the data it manipulates, and keeps both safe from outside

interference and misuse.

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

AKSHAYA INSTITUTE OF TECHNOLOGY

2. Inheritance

Inheritance is the process by which one object acquires the properties of

another object.

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

AKSHAYA INSTITUTE OF TECHNOLOGY

3. Polymorphism
Polymorphism (from Greek, meaning ―many forms‖) is a feature that

allows one interface to be used for a general class of actions.

Lexical Issues

Whitespace

 Java is a free-form language. This means that you do not need to

follow any special indentation rules.

 For instance, the Example program could have been written all on

one line or in any other strange way you felt like typing it, as long

as there was at least one whitespace character between each token

that was not already delineated by an operator or separator.

 In Java, whitespace includes a space, tab, newline, or form feed.

Identifiers

 Identifiers are used to name things, such as classes, variables, and

methods.

 An identifier may be any descriptive sequence of uppercase and

lowercase letters, numbers, or the underscore and dollar-sign

characters. (The dollar sign character is not intended for general

use.)

 They must not begin with a number, lest they be confused with a

numeric literal. Again, Java is case sensitive, so value is a different

identifier than value .

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

AKSHAYA INSTITUTE OF TECHNOLOGY

Literals
A constant value in Java is created by using a literal representation of

it.For example:

Comments:

There are the comment line,single line and multi line documentation comments.

Separators
In Java, there are a few characters that are used as separators. The most

commonly used separator in Java is the semicolon. As you have seen, it is

often used to terminate statements. The separators are shown in the following

table:

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

AKSHAYA INSTITUTE OF TECHNOLOGY

The Java Keywords
There are 67 keywords currently defined in the Java language.These

keywords, combined with the syntax of the operators and separators, form the

foundation of the Java language.

Review Questions:

1. What is an object?

2. What are two types of programming approaches?

3. Mention three principles of oops with java?

4. What is abstraction?

5. Mention the lexical issues?

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

AKSHAYA INSTITUTE OF TECHNOLOGY

Session 2

Data Types, Variables, and Arrays

The Primitive Types

Java defines eight primitive types of data: byte, short, int, long, char, float,

double, and boolean.

• Integers This group includes byte, short, int, and long, which are for

whole-valued signed numbers.

• Floating-point numbers This group includes float and double, which

represent numbers with fractional precision.

• Characters This group includes char, which represents symbols in a

character set, like letters and numbers.

• Boolean This group includes boolean, which is a special type for

representing true/false values.

Integers
Java defines four integer types: byte, short, int, and long. All of these are

signed, positive and negative values. Java does not support unsigned, positive-

only integers.

The width of an integer type should not be thought of as the amount

of storage it consumes, but rather as the behavior it defines for variables and

expressions of that type. The Java run-time environment is free to use

whatever size it wants, as long as the types behave as you declared them. The

width and ranges of these integer types vary widely, as shown in this table.

byte

The smallest integer type is byte. This is a signed 8-bit type that has a range

from –128 to 127.

Byte variables are declared by use of the byte keyword. For example, the

following declares two byte variables called b and c: byte b,c;

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

AKSHAYA INSTITUTE OF TECHNOLOGY

short
short is a signed 16-bit type. It has a range from –32,768 to 32,767. It is probably

the least-used Java type. Declaration:

short s;

short t;

int
The most commonly used integer type is int. It is a signed 32-bit type that has a

range from –2,147,483,648 to 2,147,483,647. In addition to other uses, variables

of type int are commonly employed to control loops and to index arrays.

Although you might think that using a byte or short would be more efficient than

using an int in situations in which the larger range of an int is not needed, this

may not be the case. The reason is that when byte and short values are used in

an expression, they are promoted to int when the expression is evaluated.

long
long is a signed 64-bit type and is useful for those occasions where an int type is

not large enough to hold the desired value. The range of a long is quite large. This

makes it useful when big, whole numbers are needed. For example, here is a

program that computes the number of miles that light will travel in a specified

number of days:

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

AKSHAYA INSTITUTE OF TECHNOLOGY

Floating-Point Types
Floating-point numbers, also known as real numbers, are used when evaluating

expressions that require fractional precision. There are two kinds of floating-point

types, float and double, which represent single- and double-precision numbers,

respectively. Their width and ranges are shown here:

float
The type float specifies a single-precision value that uses 32 bits of storage.

Single precision is faster on some processors and takes half as much space as

double precision, but will become imprecise when the values are either very large

or very small. Variables of type float are useful when you need a fractional

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

AKSHAYA INSTITUTE OF TECHNOLOGY

component, but don‘t require a large degree of precision. For example, float can

be useful when representing dollars and cents.

Here are some example float variable declarations:

float hightemp,lowtemp;

double
Double precision, as denoted by the double keyword, uses 64 bits to store a value.

Double precision is actually faster than single precision on some modern

processors that have been optimized for high-speed mathematical calculations.

All transcendental math functions, such as sin(), cos(), and sqrt(), return double

values. When you need to maintain accuracy over many iterative calculations, or

are manipulating large-valued numbers, double is the best choice.

Here is a short program that uses double variables to compute the area of a circle:

Characters
In Java, the data type used to store characters is char. A key point to understand

is that Java uses Unicode to represent characters. Unicode defines a fully

international character set that can represent all of the characters found in all

human languages.. At the time of Java‘s creation, Unicode required 16 bits. Thus,

in Java char is a 16-bit type. The range of a char is 0 to 65,535. There are no

negative chars.

Here is a program that demonstrates char variables:

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

AKSHAYA INSTITUTE OF TECHNOLOGY

Notice that ch1 is assigned the value 88, which is the ASCII (and Unicode) value

that corresponds to the letter X. As mentioned, the ASCII character set occupies

the first 127 values in the Unicode character set.

Although char is designed to hold Unicode characters, it can also be used as an

integer type on which you can perform arithmetic operations. For example, you

can add two characters together, or increment the value of a character variable.

Consider the following program:

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

AKSHAYA INSTITUTE OF TECHNOLOGY

Booleans
Java has a primitive type, called boolean, for logical values. It can have only one

of two possible values, true or false. This is the type returned by all relational

operators, as in the case of a < b. Boolean is also the type required by the

conditional expressions that govern the control statements such as if and for.

Here is a program that demonstrates the boolean type

Variables
The variable is the basic unit of storage in a Java program. A variable is defined

by the combination of an identifier, a type, and an optional initializer. In addition,

all variables have a scope, which defines their visibility, and a lifetime.

Declaring a Variable
In Java, all variables must be declared before they can be used. The basic form of

a variable declaration is shown here:

type identifier [= value][, identifier [= value] …];

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

AKSHAYA INSTITUTE OF TECHNOLOGY

Here, type is one of Java‘s atomic types, or the name of a class or interface. The

identifier is the name of the variable. You can initialize the variable by specifying

an equal sign and a value. Keep in mind that the initialization expression must

result in a value of the same (or compatible) type as that specified for the variable.

To declare more than one variable of the specified type, use a comma-separated

list.

Here are several examples of variable declarations of various types. Note that

some include an initialization.

Type Conversion and Casting

Java’s Automatic Conversions
When one type of data is assigned to another type of variable, an automatic type

conversion will take place if the following two conditions are met:

• The two types are compatible.

• The destination type is larger than the source type.

When these two conditions are met, a widening conversion takes place. For

example, the int type is always large enough to hold all valid byte values, so no

explicit cast statement is required.

For widening conversions, the numeric types, including integer and floating-point

types, are compatible with each other. However, there are no automatic

conversions from the numeric types to char or boolean. Also, char and boolean

are not compatible with each other.

Casting Incompatible Types

To create a conversion between two incompatible types, you must use a cast. A

cast is simply an explicit type conversion. It has this general form:

(target-type) value
Here, target-type specifies the desired type to convert the specified value to. For

example, the following fragment casts an int to a byte.

If the integer‘s value is larger than the range of a byte, it will be reduced modulo

(the remainder of an integer division by the) byte‘s range.

int a; byte b; // … b = (byte) a;
A different type of conversion will occur when a floating-point value is assigned

to an integer type: truncation. As you know, integers do not have fractional

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

AKSHAYA INSTITUTE OF TECHNOLOGY

components. Thus, when a floating-point value is assigned to an integer type, the

fractional component is lost. For example, if the value 1.23 is assigned to an

integer, the resulting value will simply be 1. The 0.23 will have been truncated.

Of course, if the size of the whole number component is too large to fit into the

target integer type, then that value will be reduced modulo the target type‘s range.

The following program demonstrates some type conversions that require casts:

Conversion of double to int.

d and i 323.142 323

Conversion of double to byte.

d and b 323.142 67

Automatic Type Promotion in Expressions
In addition to assignments, there is another place where certain type conversions

may occur: in expressions. To see why, consider the following. In an expression,

the precision required of an intermediate value will sometimes exceed the range

of either operand. For example, examine the following expression:

byte a = 40;

byte b = 50;

byte c = 100;

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

AKSHAYA INSTITUTE OF TECHNOLOGY

int d = a * b / c;
The result of the intermediate term a * b easily exceeds the range of either of its

byte operands. To handle this kind of problem, Java automatically promotes each

byte, short, or char operand to int when evaluating an expression. This means

that the subexpression a*b is performed using integers—not bytes. Thus, 2,000,

the result of the intermediate expression, 50 * 40, is legal even though a and b

are both specified as type byte.

As useful as the automatic promotions are, they can cause

confusing compile-time errors. For example, this seemingly correct code causes

a problem:

byte b = 50;
b = b * 2; // Error! Cannot assign an int to a byte!

The code is attempting to store 50 * 2, a perfectly valid byte

value, back into a byte variable. However, because the operands were

automatically promoted to int when the expression was evaluated, the result has

also been promoted to int. Thus, the result of the expression is now of type int,

which cannot be assigned to a byte without the use of a cast. This is true even if,

as in this particular case, the value being assigned would still fit in the target type.

In cases where you understand the consequences of overflow, you should use an

explicit cast, such as

byte b = 50;

b = (byte)(b * 2);
which yields the correct value of 100.

Review Questions:

1. What are data types?

2. What are variables?

3. What is type casting and type conversion?

4. Mention two types of conversions?

5. Give the syntax for declaring a variable?

6. Define scope of variables?

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

AKSHAYA INSTITUTE OF TECHNOLOGY

Session 3

Arrays
An array is a group of like-typed variables that are referred to by a common name.

Arrays of any type can be created and may have one or more dimensions. A

specific element in an array is accessed by its index.

One-Dimensional Arrays
A one-dimensional array is, essentially, a list of like-typed variables. To create

an array, you first must create an array variable of the desired type. The general

form of a one-dimensional array declaration is

type[] var-name;

Here, type declares the element type (also called the base type) of the array. The

element type determines the data type of each element that comprises the array.

Thus, the element type for the array determines what type of data the array will

hold. For example, the following declares an array named month_days with the

type ―array of int‖:

int[] month_days;

New is a special operator that allocates memory.

The general form of new as it applies to one-dimensional arrays appears as

follows:

array-var = new type [size];

Here, type specifies the type of data being allocated, size specifies the number of

elements in the array, and array-var is the array variable that is linked to the array.

That is, to use new to allocate an array, you must specify the type and number of

elements to allocate. The elements in the array allocated by new will

automatically be initialized to zero (for numeric types), false (for boolean), or

null.This example allocates a 12-element array of integers and links them to

month_days:

month_days = new int[12];

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

AKSHAYA INSTITUTE OF TECHNOLOGY

After this statement executes, month_days will refer to an array of 12 integers.

Further, all elements in the array will be initialized to zero.

Let‘s review: Obtaining an array is a two-step process. First, you must declare a

variable of the desired array type. Second, you must allocate the memory that will

hold the array, using new, and assign it to the array variable. Thus, in Java all

arrays are dynamically allocated. If the concept of dynamic allocation is

unfamiliar to you, don‘t worry. It will be described at length later in this book.

Once you have allocated an array, you can access a specific element in the array

by specifying its index within square brackets. All array indexes start at zero. For

example, this statement assigns the value 28 to the second element of

month_days:

month_days[1] = 28;

The next line displays the value stored at index 3:

System.out.println(month_days[3]);

Putting together all the pieces, here is a program that creates an array of the

number of days in each month:

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

AKSHAYA INSTITUTE OF TECHNOLOGY

When you run this program, it prints the number of days in April. As mentioned,

Java array indexes start with zero, so the number of days in April is

month_days[3] or 30.

It is possible to combine the declaration of the array variable with the allocation

of the array itself, as shown here:

int[] month_days = new int[12];

Multidimensional Arrays

In Java, multidimensional arrays are implemented as arrays of arrays. To declare

a multidimensional array variable, specify each additional index using another set

of square brackets. For example, the following declares a two-dimensional array

variable called twoD:

int[][] twoD = new int[4][5];
This allocates a 4 by 5 array and assigns it to twoD. Internally, this matrix is

implemented as an array of arrays of int. Conceptually, this array will look like

the one shown in figure:

FIGURE: A conceptual view of a 4 by 5, two-dimensional array

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

AKSHAYA INSTITUTE OF TECHNOLOGY

Introduction Type Inference with Local Variables

A new feature called local variable type inference was added to the Java

language. To begin, let‘s review two important aspects of variables. First, all

variables in Java must be declared prior to their use. Second, a variable can be

initialized with a value when it is declared. Furthermore, when a variable is

initialized, the type of the initializer must be the same as (or convertible to) the

declared type of the variable. Thus, in principle, it would not be necessary to

specify an explicit type for an initialized variable because it could be inferred by

the type of its initializer. Of course, in the past, such inference was not

supported, and all variables required an explicitly declared type, whether they

were initialized or not.

To use local variable type inference, the variable must be declared with var

as the type name and it must include an initializer. For example, in the past you

would declare a local double variable called avg that is initialized with the value

10.0, as shown here:

double avg = 10.0;

Using type inference, this declaration can now also be written like this:
var avg = 10.0;

In both cases, avg will be of type double. In the first case, its type

is explicitly specified. In the second, its type is inferred as double because the

initializer 10.0 is of type double.

As mentioned, var is context-sensitive. When it is used as the type

name in the context of a local variable declaration, it tells the compiler to use

type inference to determine the type of the variable being declared based on the

type of the initializer. Thus, in a local variable declaration, var is a placeholder

for the actual, inferred type. However, when used in most other places, var is

simply a user-defined identifier with no special meaning. For example, the

following declaration is still valid:

int var = 1; // In this case, var is simply a user-defined

identifier.

In this case, the type is explicitly specified as int and var is the name of the

variable being declared. Even though it is context-sensitive, there are a few

places in which the use of var is illegal. It cannot be used as the name of a class,

for example.

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

AKSHAYA INSTITUTE OF TECHNOLOGY

The preceding example uses var to declare only simple variables, but you can

also use var to declare an array. For example:

var myArray = new int[10]; // This is valid.

Notice that neither var nor myArray has brackets. Instead, the type of

myArray is inferred to be int[]. Furthermore, you cannot use brackets on the

left side of a var declaration. Thus, both of these declarations are invalid:

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

Operators

Java provides a rich operator environment. Most of its operators can be

divided into the following four groups: arithmetic, bitwise, relational, and

logical.

Arithmetic Operators

Arithmetic operators are used in mathematical expressions in the same way

that they are used in algebra. The following table lists the arithmetic operators.

Program to demonstrate different type of operators

//This program explains about operator

public class Operator {

public static void main(String[] args) {

int a=10,b=20;

System.out.println(a==b);

System.out.println(a!=b);

System.out.println(a>b);

System.out.println(a<b);

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

System.out.println(a<=b);

System.out.println(a>=b);

System.out.println(a==b && a!=b);

System.out.println(a==b || a!=b);

System.out.println(!(a>b));

System.out.println(a--);

System.out.println(++a);

System.out.println(a++);

System.out.println(++a);

}

}

Arithmetic Assignment Operators

Java provides special operators that can be used to combine an arithmetic

operation with an assignment

a = a + 4;

In Java, you can rewrite this statement as shown here:

a += 4;

This version uses the += compound assignment operator. Both statements

perform the same action. There are compound assignment operators for all of

the arithmetic, binary operators. Thus, any statement of the form

var = var op expression; can be rewritten as var op= expression;

The compound assignment operators provide two benefits. First, they save you

a bit of typing, because they are ―shorthand‖ for their equivalent long forms.

Second, in some cases they are more efficient than are their equivalent long

forms.

Here is a sample program that shows several op = assignments in action:

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

Review questions:

1. Define Arrays?

2. Mention two types of arrays?

3. What is variable type inference?

4. Mention different arithmetic operators?

5. What is assignment operator?

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

Session 4

Relational Operators

The relational operators determine the relationship that one operand has to the

other. Specifically, they determine equality and ordering. The relational

operators are shown here

The outcome of these operations is a Boolean value. The relational operators

are most frequently used in the expressions that control the if statement and

the various loop statements

Boolean Logical Operators

The Boolean logical operators shown here operate only on Boolean operands.

All of the binary logical operators combine two Boolean values to form a

resultant Boolean value.

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

The output of the above program is:

Short-Circuit Logical Operators

Java provides two interesting Boolean operators not found in some other

computer languages. These are secondary versions of the Boolean AND and

OR operators, and are commonly known as short-circuit logical operators. As

you can see from the preceding table, the OR operator results in true when A

is true, no matter what B is. Similarly, the AND operator results in false when

A is false, no matter what B is. If you use the || and && forms, rather than the

| and & forms of these operators, Java will not bother to evaluate the right-

hand operand when the outcome of the expression can be determined by the

left operand alone. This is very useful when the right-hand operand depends

on the value of the left one in order to function properly. For example, the

following code fragment shows how you can take advantage of short-circuit

logical evaluation to be sure that a division operation will be valid before

evaluating it: if (denom != 0 && num / denom > 10) Since the short-circuit

form of AND (&&) is used, there is no risk of causing a run-time exception

when denom is zero. If this line of code were written using the single & version

of AND, both sides would be evaluated, causing a run-time exception when

demon is zero

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

The? Operator

Java includes a special ternary (three-way) operator that can replace certain

types of if-then-else statements. This operator is the ?.

expression1 ? expression2 : expression3

Here, expression1 can be any expression that evaluates to a boolean value. If

expression1 is true, then expression2 is evaluated; otherwise, expression3 is

evaluated.

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

Operator Precedence

Table shows the order of precedence for Java operators, from highest to

lowest. Operators in the same row are equal in precedence. In binary

operations, the order of evaluation is left to right (except for assignment,

which evaluates right to left).

Review Questions:

1. Give the different relational operators?

2. What are Boolean logical operators?

3. What is operator precedence?

4. Define ternary operator?

5. Define operator parentheses?

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

Session 5

Control Statements

A programming language uses control statements to cause the flow of

execution to advance and branch based on changes to the state of a program.

Java‘s program control statements can be put into the following categories:

1. Selection

2. iteration

3. jump.

Selection statements allow your program to choose different paths of

execution based upon the outcome of an expression or the state of a variable.

Iteration statements enable program execution to repeat one or more

statements (that is, iteration statements form loops).

Jump statements allow your program to execute in a nonlinear fashion

Java‘s Selection Statements

Java supports two selection statements: if and switch. These statements allow

you to control the flow of your program‘s execution based upon conditions

known only during run time

If

if (condition) statement1;

else statement2;

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

Nested ifs

A nested if is an if statement that is the target of another if or else. Nested ifs

are very common in programming. When you nest ifs, the main thing to

remember is that an else statement always refers to the nearest if statement

that is within the same block as the else and that is not already associated with

an else.

The if-else-if Ladder

A common programming construct that is based upon a sequence of nested ifs

is the if-else-if ladder. It looks like this:

if(condition)

statement;

else if(condition)

statement;

else if(condition)

statement;

.

.

.

else

statement

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

The Traditional switch

The switch statement is Java‘s multi way branch statement. It provides an

easy way to dispatch execution to different parts of your code based on the

value of an expression.

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

The break statement is used inside the switch to terminate a statement

sequence. When a break statement is encountered, execution branches to the

first line of code that follows the entire switch statement

Iteration Statements

Java‘s iteration statements are for, while, and do-while. These statements

create what we commonly call loops. As you probably know, a loop repeatedly

executes the same set of instructions until a termination condition is met.

while

The while loop is Java‘s most fundamental loop statement. It repeats a

statement or block while its controlling expression is true. Here is its general

form:

while(condition) {

// body of loop

}

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

Review questions:

1. Mention the different selection statement?

2. What is traditional switch?

3. What are iteration statements?

4. Give the general form of while statements?

5. Give the General form of traditional switch statement?

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

Session 6

do-while

As you just saw, if the conditional expression controlling a while loop is

initially false, then the body of the loop will not be executed at all. However,

sometimes it is desirable to execute the body of a loop at least once, even if

the conditional expression is false to begin with. In other words, there are

times when you would like to test the termination expression at the end of the

loop rather than at the beginning. Fortunately, Java supplies a loop that does

just that: the do-while. The do-while loop always executes its body at least

once, because its conditional expression is at the bottom of the loop. Its

general form is

do {

// body of loop

} while (condition);

Each iteration of the do-while loop first executes the body of the loop and

then evaluates the conditional expression

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

For

for(initialization; condition; iteration) {

// body

}

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

The For-Each Version of the for Loop

A second form of for implements a ―for-each‖ style loop. As you may know,

contemporary language theory has embraced the for-each concept, and it has

become a standard feature that programmers have come to expect. A for-each

style loop is designed to cycle through a collection of objects, such as an array,

in strictly sequential fashion, from start to finish. In Java, the for-each style of

for is also referred to as the enhanced for loop. The general form of the for-

each version of the for is shown here for (type itr-var : collection) statement-

block Here, type specifies the type and itr-var specifies the name of an

iteration variable that will receive the elements from a collection, one at a time,

from beginning to end. The collection being cycled through is specified by

collection

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

Iterating Over Multidimensional Arrays

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

Using continue

Sometimes it is useful to force an early iteration of a loop. That is, you might

want to continue running the loop but stop processing the remainder of the

code in its body for this particular iteration. This is, in effect, a goto just past

the body of the loop, to the loop‘s end. The continue statement performs such

an action

Return

The last control statement is return. The return statement is used to explicitly

return from a method. That is, it causes program control to transfer back to the

caller of the method.

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

Review questions:

1. Give the general form for do while?

2. Give the general form for traditional for statement?

3. Mention the different jump statement?

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

MODULE-1

1. Explain how Object Oriented Programming model is different from Process/procedure driven

programming model?

2. Define the term ‗Abstraction` and how ‗abstraction‘ applied to traditional computer programs?

3. Explain three OOP principles: Encapsulation, Inheritance and Polymorphism.

4. Explain the following with a suitable JAVA program segment.

a. Code blocks

b. Comments

c. Identifiers

d. Literals

5. Explain integer and Boolean data types in Java and their relevance in programming.

6. Explain floating point and character data types in Java and their usage in problem solving.

7. Define variable and dynamic initialization variables with syntax and examples in Java.

8. Define scope, scope types and lifetime of variables with respect to Java with suitable examples.

9. Explain automatic type conversion and explicit type conversion support in Java with suitable

examples.

10. Explain automatic type promotion scenarios in Java with examples.

11. Define array. Explain one dimensional array declaration and element access in Java with

examples.

12. Explain one dimensional array initialization with examples.

13. Explain declaration and initialization of multi-dimensional arrays in Java with code segments.

14. Explain the term ‗type inference‘. Explain Java support and rules for type inference with suitable

examples.

15. Develop a Java program to compute the sum of three digit number.

16. Develop a program to create/initialize a Jagged array containing Floyd‘s triangle.

17. Explain modulus and compound assignment operators with suitable Java code segments.

18. Explain the use of increment and decrement operators with suitable Java code segments.

19. List and explain, the role of relational operators in programming.

20. Explain the role of short-circuit logical operators in programming with suitable Java code

segments.

21. With syntax and example, explain the ternary (?) operator.

22. Develop a program to test the given number is odd or even.

23. Develop a program to the given number is positive and divisible by 5.

24. Explain with syntax and example, the structure if, nested if and if-else-if ladder.

25. Develop a program to find maximum among three numbers.

OBJECT ORIENTED PROGRAMMING WITH JAVA (BCS306A)

26. Develop a program to input electricity unit charges and calculate total electricity bill according

to the given condition:

 For first 50 units Rs. 0.50/unit

 For next 100 units Rs. 0.75/unit

 For next 100 units Rs. 1.20/unit

 For unit above 250 Rs. 1.50/unit

 An additional surcharge of 20% is added to the bill

27. Develop a program to find all roots of a quadratic equation.

28. Explain traditional switch statement with an example. Highlight the role of break and default in

switch statement.

29. Develop a program to create Simple Calculator (+, -, x, /) using switch-case.

30. Develop a program print total number of days in a month using switch case.

31. Explain while and do-while statement with syntax and example. Highlight the similarity and

difference between while and do-while statement.

32. Develop a program to print Fibonacci series up to n terms.

33. Develop a program to check a given number is Armstrong or not.

34. Explain traditional for statement with syntax and example.

35. Develop a program to print all Perfect numbers between 1 to n.

36. Develop a program to print Pascal triangle upto n rows.

37. Explain for-each (enhance for) statement with syntax and example.

38. Develop a program to find sum and average of N items present in a array (use for-each).

39. Develop a program to create a matrix, print the matrix and find the row-sum (use for-each).

40. Explain the role of continue statement with an example.

41. Develop a program to find the sum of even numbers present in an array (use continue statement).

42. Explain the use of break statement, to exit a loop and as civilized goto statement with suitable

code segments/examples.

43. Develop a program to check a given number is prime or not (use break statement).

44. Explain the role of ‗return‘ in Java with an example.

45. Develop a program to find the value of a/b. terminate the program on the value of b=0;

46. Develop a program to find a/b. Use guard expression (short-circuit operator) for b!=0.

