

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

 DIGITAL DESIGN AND COMPUTER ORGANIZATION

 (BCS304)

 Prepared by:

 Mrs.Shivaranjani S.S

 Assistant Professor

 Department of AI&DS

 AIT, Tumkur

Syllabus:

Module-2

Combinational Logic

Combinational Logic: Introduction, Combinational Circuits, Design Procedure, Binary Adder- Subtractor,

Decoders, Encoders, Multiplexers. HDL Models of Combinational Circuits – Adder, Multiplexer,

Encoder. Sequential Logic: Introduction, Sequential Circuits, Storage Elements: Latches, Flip-Flops.

Introduction

• Logic circuits for digital systems may be combinational or sequential.

• A combinational circuit consists of logic gates whose outputs at any time are

determined from only the present combination of inputs.

• A combinational circuit performs an operation that can be specified logically by a set

of Boolean functions.

• sequential circuits employ storage elements in addition to logic gates. Their outputs

are a function of the inputs and the state of the storage elements

• Because the state of the storage elements is a function of previous inputs, the outputs

of a sequential circuit depend not only on present values of inputs, but also on past

inputs, and the circuit behavior must be specified by a time sequence of inputs and

internal states.

combinational circuit

A combinational circuit consists of an interconnection of logic gates.

• Combinational logic gates react to the values of the signals at their inputs and

produce the value of the output signal, transforming binary information from the

given input data to a required output data.

The n input binary variables come from an external source; the m output variables are

produced by the internal combinational logic circuit and go to an external destination.

Each input and output variable exists physically as an analog signal whose values are

interpreted to be a binary signal that represents logic 1 and logic 0.

• If the registers are included with the combinational gates, then the total circuit must

be considered to be a sequential circuit.

• For n input variables, there are 𝟐𝒏 possible combinations of the binary inputs.

• For each possible input combination, there is one possible value for each output

variable. Thus, a combinational circuit can be specified with a truth table that lists the

output values for each combination of input variables.

Design procedure

The procedure to design combinational circiut involves the following steps:

1. From the specifications of the circuit, Determine the required number of inputs

and outputs and assign a symbol to each.

2. Derive the truth table that defines the required relationship between inputs and

outputs.

3. Obtain the simplified Boolean functions for each output as a function of the

input variables.

4. Draw the logic diagram and verify the correctness of the design (manually or by

simulation).

Example for design Procedure

Code Conversion (Convert BCD to Excess-3 Code)

• A code converter is a circuit that makes the two systems compatible even though

each uses a different binary code.

• Since each code uses four bits to represent a decimal digit, there must be four input

variables and four output variables. We designate the four input binary variables by

the symbols A, B, C, and D, and the four output variables by w, x, y , and z .

• ADD 3 to BCD to get Excess -3 Code

Note that four binary variables may have 16 bit combinations, but only 10 are listed

in the truth table. The six bit combinations not listed for the input variables are don’t-

care combinations.

Binary Adder- Subtractor

• A combinational circuit that performs the addition of two bits is called a half adder .

• The addition of three bits (two significant bits and a previous carry) is a full adder.

• A binary adder–subtractor is a combinational circuit that performs the arithmetic

operations of addition and subtraction with binary numbers.

• The half adder design is carried out first, from which we develop the full adder.

• Connecting n full adders in cascade produces a binary adder for two n -bit numbers.

Half Adder

 Half Adder circuit needs two binary inputs and two binary outputs.

 output variables produce the sum and carry. We assign symbols x and y to the two

inputs and S (for sum) and C (for carry) to the outputs.

 The C output is 1 only when both inputs are 1. The S output represents the least

significant bit of the sum.

 The truth table for the half adder is listed in Table 4.3 .

The simplified Boolean functions for the two

outputs can be obtained directly from the truth

table. The simplified sum-of-products expressions

are

The logic diagram of the half adder implemented in sum of products is shown in Fig.

4.5(a) . It can be also implemented with an exclusive-OR and an AND gate as shown in

Fig. 4.5(b)

Full Adder

• A full adder is a combinational circuit that forms the arithmetic sum of three bits. It

consists of three inputs and two outputs.

• Two of the input variables, denoted by x and y , represent the two significant bits to

be added. The third input, z , represents the carry from the previous lower significant

position. The two outputs are designated by the symbols S for sum and C for carry.

• The logic diagram for the full adder implemented in sum-of-products form is shown

in Fig. 4.7

Implementation of Full adder using 2 half adder :

We know that

S=xy’z’ + x’yz’ + xyz + x’y’z

=z’(xy’+x’y)+z(xy+x’y’)

=z’(xy’+x’y)+z(x’y+xy’)’

=z’(x ⊕ y)+z(x ⊕ y)’

=z’A+zA’

=z ⊕ A

S=z ⊕ x ⊕y

C=xy+xz+yz

=xy+xz(y+y’)+yz(x+x’)

=xy+xyz+xy’z+xyz+x’yz

=xy+xyz+z(xy’+x’y)

=xy(1+z)+z(x^y)

C=xy+z(x⊕y)

Binary Adder:

A binary adder is a digital circuit that produces the arithmetic sum of two binary numbers.

It can be constructed with full adders connected in cascade, with the output carry from

each full adder connected to the input carry of the next full adder in the chain.

• n-bit numbers requires a chain of n full adders or a chain of one-half adder and n-1

full adders.

• Eg:4bit numbers requires a chain of 4 fulladders or one HA and 3FAs.

• interconnection of four full-adder (FA) circuits to provide a four-bit binary ripple

carry adder

• The augend bits of A and the addend bits of B are designated by subscript numbers

from right to left, with subscript 0 denoting the least significant bit. The carries are

connected in a chain through the full adders. The input carry to the adder is C0, and it

ripples through the full adders to the output carry C4.

The input carry C0 in the least significant position must be 0.

The value of Ci+1 in a given significant position is the output carry of the full adder.

The carry propagation time is an important attribute of the adder because it limits the

speed with which two numbers are added.

1. write Verilog code for 4 bit parallel adder using full adder as component.

2. Write Verilog code for 4 bit adder .

There are several techniques for reducing the carry propagation time in a parallel adder.

The most widely used technique employs the principle of carry lookahead logic .

Carry Propagation

• Carry Propagation The addition of two binary numbers in parallel implies that all the

bits of the augend and addend are available for computation at the same time.

• Consider the circuit of the full adder shown in Fig. 4.10 . If we define two new binary

variables.

• Gi is called a carry generate , and it produces a carry of 1 when both Ai and Bi are 1,

regardless of the input carry Ci .

• Pi is called a carry propagate , because it determines whether a carry into stage i will

propagate into stage i + 1

•

Binary ADDER-Subtractor

The addition and subtraction operations can be combined into one circuit with one

common binary adder by including an exclusive-OR gate with each full adder.

A four-bit adder–subtractor circuit is shown in Fig. 4.13 . The mode input M controls the

operation. When M = 0, the circuit is an adder, and when M = 1, the circuit becomes a

subtractor. Each exclusive-OR gate receives input M and one of the inputs of B.

When M = 0, we have B ⊕0 = B. The full adders receive the value of B , the input carry is

0, and the circuit performs A plus B . When M = 1, we have B ⊕ 1 = B’ and C0 = 1. The B

inputs are all complemented and a 1 is added through the input carry. The circuit performs

the operation A plus the 2’s complement of B . (The exclusive-OR with output V is for

detecting an overflow.)

Binary Addition Example:

Binary Subtraction Example:

DECODERS

• A Decoder is a combinational circuit that converts binary information from n input

lines to a maximum of 2𝑛 unique output lines.

• The decoders presented here are called n -to- m -line decoders, where m … 2𝑛 . Their

purpose is to generate the 2𝑛 (or fewer) minterms of n input variables.

• Each combination of inputs will assert a unique output. The name decoder is also

used in conjunction with other code converters, such as a BCD-to-seven-segment

decoder.

2:4 decoder (1 of 4 decoder)

A 2 to 4 decoder is a combinational logic circuit that takes two input lines, typically labeled

A and B, and generates four output lines, usually labeled Q0, Q1, Q2, and Q3. The decoder

analyzes the input combination and activates the corresponding output line

3:8 Decoder

 A 3 to 8 decoder has three inputs (x,y,z) and eight outputs (D0 to D7).

 Based on the 3 inputs one of the eight outputs is selected.

 The truth table for 3 to 8 decoder is shown in the below table.

 From the truth table, it is seen that only one of eight outputs (D0 to D7) is selected

based on three select inputs.

 From the truth table, the logic expressions for outputs can be written as follows:

Decoders with enable inputs can be connected together to form a larger decoder circuit.

Implement 4:16 decoder using 2 3:8 decoder.

two 3-to-8-line decoders with enable inputs connected to form a 4-to-16-line decoder.

When w =0, the top decoder is enabled and the other is disabled. The bottom decoder outputs

are all 0’s, and the top eight outputs generate minterms 0000 to 0111.

When w =1, the enable conditions are reversed: The bottom decoder outputs generate

minterms 1000 to 1111.

Combinational Logic Implementation

Implement the following boolean function using 3:8 decoder

S(x, y, z) = ∑(1, 2, 4, 7)

C(x, y, z) = ∑(3, 5, 6, 7)

Since there are three inputs and a total of eight minterms, we need a three-to-eight-line decoder.

The decoder generates the eight minterms for x , y , and z . The OR gate for output S forms the logical sum

of minterms 1, 2, 4, and 7. The OR gate for output C forms the logical sum of minterms 3, 5, 6, and 7.

Exemplify(Implement) the following function using 3:8 decoder

i) f(a,b, c,d)=∑m (L,2, 3,4)

ii) f(a,b, c, d)=∑m (3,5,7)

Encoder

• An encoder is a digital circuit that performs the inverse operation of a decoder.

• An encoder has 2𝑛 (or fewer) input lines and n output lines.
• 4:2 Encoder(n=2)

4:2 Encoder

8:3 Encoder

• an encoder is the octal-to-binary encoder whose truth table is given in Table 4.7

• It has eight inputs (one for each of the octal digits) and three outputs that generate the corresponding

binary number. It is assumed that only one input has a value of 1 at any given time.

• The encoder can be implemented with OR gates whose inputs are determined directly from the truth

table

• Output z is equal to 1 when the input octal digit is 1, 3, 5, or 7.

• Output y is 1 for octal digits 2, 3, 6, or 7, and

• output x is 1 for digits 4, 5, 6, or 7.

• The encoder defined in Table 4.7 has the limitation that only one input can be active at any given

time. If two inputs are active simultaneously, the output produces an undefined combination. For

example, if D3 and D6 are 1 simultaneously, the output of the encoder will be 111 because all three

outputs are equal to 1.

• To resolve this ambiguity, encoder circuits must establish an input priority to ensure that only one

input is encoded.

• The output 111 does not represent either binary 3 or binary 6. To resolve this ambiguity, encoder

circuits must establish an input priority to ensure that only one input is encoded. If we establish a higher

priority for inputs with higher subscript numbers, and if both D3 and D6 are 1 at the same time, the output

will be 110 because D6 has higher priority than D3. Another ambiguity in the octal-to-binary encoder is

that an output with all 0’s is generated when all the inputs are 0; but this output is the same as when D0 is

equal to 1. The discrepancy can be resolved by providing one more output to indicate whether at least one

input is equal to 1.

Priority Encoder

• A priority encoder is an encoder circuit that includes the priority function.

• The operation of the priority encoder is such that if two or more inputs are equal to 1 at the same

time, the input having the highest priority will take precedence.

• The truth table of a four-input priority encoder is given in Table 4.8

• In addition to the two outputs x and y , the circuit has a third output designated by V ; this is a

valid bit indicator that is set to 1 when one or more inputs are equal to 1.

• . If all inputs are 0, there is no valid input and V is equal to 0. The other two outputs are not

inspected when V equals 0 and are specified as don’t-care conditions.

• Input D3 has the highest priority, so, regardless of the values of the other inputs, when this input is

1, the output for xy is 11 (binary 3).

• D2 has the next priority level. The output is 10 if D2 = 1, provided that D3 = 0, regardless of the

values of the other two lower priority inputs. The output for D1 is generated only if higher priority

inputs are 0.

D0 D1 D2 D3 X Y V

0 0 0 0 X X 0

0 0 0 1 1 1 1

0 0 1 0 1 0 1

0 0 1 1 1 1 1

0 1 0 0 0 1 1

0 1 0 1 1 1 1

0 1 1 0 1 0 1

0 1 1 1 1 1 1

1 0 0 0 0 0 1

1 0 0 1 1 1 1

1 0 1 0 1 0 1

1 0 1 1 1 1 1

1 1 0 0 0 1 1

1 1 0 1 1 1 1

1 1 1 0 1 0 1

1 1 1 1 1 1 1

Multiplexer

• A multiplexer is a combinational circuit that selects binary information from one of many input lines

and directs it to a single output line

• The selection of a particular input line is controlled by a set of selection lines

• normally, there are 2𝑛 input lines and n selection lines whose bit combinations determine which input is

selected.

Truth Table

S Y

0

1

Design 2:1 Multiplexer

𝑦 = 𝑠′𝐼0 + 𝑠𝐼1

Boolean Expression

A 2-to-1 multiplexer consists of two inputs I0 and I1, one select input S and one output Y. Depending

on the select signal, the output is connected to either of the inputs. Since there are two input signals,

only two ways are possible to connect the inputs to the outputs, so one select is needed to do these

operations.

4:1 Multiplexer

Above figures represents block diagram ,truth table and implementation using basic gates of

4:1 multiplexer.

4x1 Multiplexer has four data inputs I0, I1, I2 & I3, two selection lines S0 & S1 and one output Y. One of

these 4 inputs will be connected to the output based on the combination of inputs present at these two

selection lines.

8:1 multiplexer

• Multiplexer circuits can be combined with common selection inputs to provide

multiple-bit selection logic. As an illustration, a quadruple 2-to-1-line multiplexer

is shown in Fig. 4.26 . The circuit has four multiplexers, each capable of selecting

one of two input lines. Output Y0 can be selected to come from either input A0 or

input B0. Similarly, output Y1 may have the value of A1 or B1, and so on. Input

selection line S selects one of the lines in each of the four multiplexers. The enable

input E must be active (i.e., asserted) for normal operation.

• As shown in the function table, the unit is enabled when E = 0. Then, if S = 0, the

four A inputs have a path to the four outputs. If, by contrast, S = 1, the four B inputs

are applied to the outputs. The outputs have all 0’s when E = 1, regardless of the

value of S .

•

Design 4:1 MUX using only 2:1 MUX

Implement 8:1 Mux using 4:1mux and 2:1mux

8:1 MUX Truth Table

Implement using multiplexer F (x, y, z) = (1, 2, 6, 7)

n=3

n- 1=2 select lines

𝟐𝒏−𝟏 =4 data inputs

Implement using multiplexer F (A, B, C, D) = (1, 3, 4, 11, 12, 13, 14, 15)

Three-State Gates

• A multiplexer can be constructed with three-state gates—digital circuits that exhibit

three states.

• Two of the states are signals equivalent to logic 1 and logic 0 as in a conventional

gate.

• The third state is a high-impedance state in which

• (1) the logic behaves like an open circuit, which means that the output appears to be

disconnected,

• (2) the circuit has no logic significance, and

• (3) the circuit connected to the output of the three-state gate is not affected by the

inputs to the gate. Three-state gates may perform any conventional logic, such as

AND or NAND. However, the one most commonly used is the buffer gate.

• The graphic symbol for a three-state buffer gate is

The buffer has a normal input, an output, and a control input that determines the state of the

output. When the control input is equal to 1, the output is enabled and the gate behaves like

a conventional buffer, with the output equal to the normal input. When the control input is

0, the output is disabled and the gate goes to a high-impedance state, regardless of the value

in the normal input. The high-impedance state of a three-state gate provides a special

feature not available in other gates. Because of this feature, a large number of three-state

gate outputs can be connected with wires to form a common line without endangering

loading effects.

• The construction of multiplexers with three-state buffers is demonstrated in Fig. 4.30

. Figure 4.30(a) shows the construction of a two-to-one-line multiplexer with 2 three-state

buffers and an inverter. The two outputs are connected together to form a single output

line. (Note that this type of connection cannot be made with gates that do not have three-

state outputs.) When the select input is 0, the upper buffer is enabled by its control input

and the lower buffer is disabled. Output Y is then equal to input A . When the select input

is 1, the lower buffer is enabled and Y is equal to B .

Y=AS’+BS

HDL models of combinational circuits

• The logic of a module can be described in any one (or a combination) of the following

modeling styles:

• Behavioral modeling using procedural assignment statements with the keyword always.

 Gate-level (structural) modeling describes a circuit by specifying its gates and how

they are connected with each other. Gate-level modeling using instantiations of

predefined and user-defined primitive gates

• Dataflow modeling is used mostly for describing the Boolean equations of

combinational logic, Dataflow modeling using continuous assignment statements with

the keyword assign.

Write a Verilog Program For Binary Adder(4bit)

Write a Verilog code for 2:1 mux(multiplexer)

Using cond itional operator

𝑦 = 𝑠′𝐼0 + 𝑠𝐼1

Using Data flow Model

Timing Diagram

Behavioral modelling for 2:1 Mux

Using Case Statement using If else statement

Write Verilog program for 4:1mux using CASE STATEMENT

Write a Verilog code for below figure

Sequential Logic

▶ Sequential logic refers to a type of digital logic circuit that uses
memory elements to store information.

▶ It consists of a combinational circuit to which storage elements are
connected to form a feedback path. The storage elements are devices
capable of storing binary information.

▶ a sequential circuit is specified by a time sequence of inputs, outputs,
and internal states.

Differentiate between combinational logic and sequential logic

▶ The storage elements (memory) used in clocked sequential circuits are
called flipflops.

▶ A flip-flop is a binary storage device capable of storing one bit of
information.

Storage Elements:

1)Latches:

▶ Latches are digital circuits that serve as basic building blocks in the

construction of sequential logic circuits.

▶ They are bistable, meaning they have two stable states and can be

used to store binary information. Latches are often used for

temporary storage of data within a digital system.

▶ There are several types of latches, with the most common being the

1)SR latch (Set-Reset latch), 2)D latch (Data latch),3) JK latch.

• Storage elements that operate with signal levels (rather than signal

transitions) are referred to as latches ; those controlled by a clock

transition are flip-flops.Latches are said to be level sensitive devices;

flip-flops are edge-sensitive devices.The two types of storage elements

are related because latches are the basic circuits from which all flip-

flops are constructed.

SR Latch (Set-Reset Latch):

• The SR latch has two inputs, S (Set) and R (Reset).It has two outputs,

Q and ~Q (complement of Q).

• When S is asserted, Q is set to 1, and when R is asserted, Q is reset

to 0.The SR latch is sensitive to the input conditions, and having both

S and R asserted simultaneously can lead to unpredictable behavior.

SR Latch with nor gates

SR latch with control input

where S and R stand for set and reset. It can be constructed from a pair of cross-coupled NOR logic gates.
The stored bit is present on the output marked Q.

While the S and R inputs are both low, feedback maintains the Q and Q outputs in a constant state,
with Q the complement of Q. If S (Set) is pulsed high while R (Reset) is held low, then the Q output is forced
high, and stays high when S returns to low; similarly, if R is pulsed high while S is held low, then the Q output
is forced low, and stays low when R returns to low.

It consists of the basic SR latch and two additional NAND gates. The control input En
acts as an enable signal for the other two inputs. The outputs of the NAND gates stay
at the logic-1 level as long as the enable signal remains at 0. This is the quiescent
condition for the SR latch. When the enable input goes to 1, information from the S or
R input is allowed to affect the latch. The set state is reached with S = 1, R = 0, and
En = 1 active-high enabled). To change to the reset state, the inputs must be S = 0, R
= 1, and En = 1. In either case, when En returns to 0, the circuit remains in its
current state. The control input disables the circuit by applying 0 to En, so that the
state of the output does not change regardless of the values of S and R . Moreover,
when En = 1 and both the S and R inputs are equal to 0, the state of the circuit does

not change. These conditions are listed in the function table accompanying the
diagram.

D latch(transparent latch)

A D latch can store a bit value, either 1 or 0. When its Enable pin is HIGH, the value
on the D pin will be stored on the Q output.

The D Latch is a logic circuit most frequently used for storing data in digital systems.
It is based on the S-R latch, but it doesn’t have an “undefined” or “invalid” state
problem.

One way to eliminate the undesirable condition of the indeterminate state in the

SR latch is to ensure that inputs S and R are never equal to 1 at the same time.

This is done in the D latch, shown in Fig. 5.6 . This latch has only two inputs: D

(data) and En (enable). The D input goes directly to the S input, and its

complement is applied to the R input. As long as the enable input is at 0, the

cross-coupled SR latch has both inputs at the 1 level and the circuit cannot

change state regardless of the value of D . The D input is sampled when En = 1.

If D = 1, the Q output goes to 1, placing the circuit in the set state. If D = 0,

output Q goes to 0, placing the circuit in the reset state.

The graphic symbols for the various latches are shown in Fig. 5.7 . A latch is

designated by a rectangular block with inputs on the left and outputs on the

right. One output designates the normal output, and the other (with the bubble

designation) designates the complement output

STORAGE ELEMENTS : FLIP – FLOPS

▶ Flip-flops are fundamental building blocks in digital electronics and

sequential logic circuits.

▶ They are bistable multivibrators, like latches, but they are edge-

triggered and use a clock signal to control the timing of state changes.

▶ Flip-flops are widely used for storing binary information in electronic

systems.

Edge triggered DFF

The construction of a D flip-flop with two D latches and an inverter is shown in

Fig. 5.9 . The first latch is called the master and the second the slave. The

circuit samples the D input and changes its output Q only at the negative edge

of the synchronizing or controlling clock (designated as Clk). When the clock is

0, the output of the inverter is 1. The slave latch is enabled, and its output Q is

equal to the master output Y . The master latch is disabled because Clk = 0.

When the input pulse changes to the logic-1 level, the data from the external D

input are transferred to the master. The slave, however, is disabled as long as

the clock remains at the 1 level, because its enable input is equal to 0. Any

change in the input changes the master output at Y, but cannot affect the slave

output. When the clock pulse returns to 0, the master is disabled and is isolated

from the D input. At the same time, the slave is enabled and the value of Y is

transferred to the output of the flip-flop at Q . Thus, a change in the output of

the flip-flop can be triggered only by and during the transition of the clock from

1 to 0.

Comparison between Latch and Flipflop

construction of an positive edge-triggered D flip-flop uses three SR latches

Clk D S R Q Q’

 0 1

Assume(previous output)

0 0 1 1 0 1

 No Change

0 1 1 1 No Change

1 1 0 1 1 0

0 0 1 1 No change

1 0 1 0 0 1

JK FLIPFLOP

When J = 1 and K = 0, D = Q’ + Q = 1, so the next clock edge sets the output to 1.

When J = 0 and K = 1, D = 0, so the next clock edge resets the output to 0.

When both J = K = 1 and D = Q, the next clock edge complements the output.

When both J = K = 0 and D = Q, the clock edge leaves the output unchanged.

T Flipflop

T Flipflop using JK Flipflop

T = 0 (J = K = 0), a clock edge does not change the output. When T = 1 (J = K = 1), a

clock edge complements the output. The complementing flip-flop is useful for

designing binary counters.

Implementation of TFF using DFF

The T flip-flop can be constructed with a D flip-flop and an exclusive-OR gate as

shown in Fig. (b). The expression for the D input is D = T ⊕ Q = T’Q + TQ’ When T =

0, D = Q and there is no change in the output. When T = 1, D = Q’ and the output

complements.

D=T^Q

D=T’Q+TQ’

▶ Characteristic tablesA characteristic table defines the logical properties of a flip-flop by

describing its operation in tabular form. They define the next state (i.e., the state that

results from a clock transition) as a function of the inputs and the present state

▶ Q(t) denotes the state of the flip-flop immediately before the clock edge, and

▶ Q(t + 1) denotes the state that results from the clock transition.

Characteristic equation

▶ It is the Boolean expression in terms of its input and output which determines

the next state of the flipflop.

T FF

DFF

JKFF

Write Verilog code for Flipflops

SR flipflop JK Flipflop

D flipflop T Flipflop

------------------------**--------------

QUESTION BANK WITH SOLUTION BCS302

1

MODULE 1 & 2
1. Minimize the following boolean function-

F(A, B, C, D) = Σm(0, 1, 2, 5, 7, 8, 9, 10, 13, 15)

Solution:

Thus, minimized boolean expression is-

F(A, B, C, D) = AD + B’D + B’C’ + A’D’

Thus, minimized boolean expression is-

F(A, B, C, D) = BD + C’D + B’D’

2. Minimize the following boolean function

F(A, B, C, D) = Σm(1, 3, 4, 6, 8, 9, 11, 13, 15) + Σd(0, 2, 14)

QUESTION BANK WITH SOLUTION BCS302

2

3. Minimize the following boolean function

F(A, B, C) = Σm(0, 1, 6, 7) + Σd(3, 5)

Thus, minimized boolean expression is

F(A, B, C) = A + B’ + C’

Thus, minimized boolean expression is

F(A, B, C) = AB + A’B’

4. Minimize the following boolean function

F(A, B, C) = Σm(1, 2, 5, 7) + Σd(0, 4, 6)

QUESTION BANK WITH SOLUTION BCS302

3

5. Minimize the following boolean function

F(A, B, C) = Σm(0, 1, 6, 7) + Σd(3, 4, 5)

Thus, minimized boolean expression is

F(A, B, C) = A + B’

6. Minimize the following boolean function

F(A, B, C, D) = Σm(0, 2, 8, 10, 14) + Σd(5, 15)

Thus, minimized boolean expression is

F(A, B, C, D) = ACD’ + B’D’

QUESTION BANK WITH SOLUTION BCS302

4

7. Minimize the following boolean function-

F(A, B, C, D) = Σm(3, 4, 5, 7, 9, 13, 14, 15)

Thus, minimized boolean expression is

F(A, B, C, D) = A’BC’ + A’CD + AC’D + ABC

8. Minimize the following boolean function

F(W, X, Y, Z) = Σm(1, 3, 4, 6, 9, 11, 12, 14)

Thus, minimized boolean expression is-

F(W, X, Y, Z) = X ⊕ Z

QUESTION BANK WITH SOLUTION BCS302

5

9. Minimize the following boolean function

F(A,B,C)=π(0,3,6,7)

(A' + B’) (B’ + C’) (A + B + C)

Thus, minimized boolean expression is-

(C+D’+B’).(C’+D’+A).(A’+C+D).(A’+B+C’)

10. Minimize the following boolean function

F(A,B,C,D)= π (3,5,7,8,10,11,12,13)

Thus, minimized boolean expression is-

QUESTION BANK WITH SOLUTION BCS302

6

11. Minimize the following boolean function

F (P, Q, R) = π (0,3,6,7)

Thus, minimized boolean expression is-

(C + D’+ B’).(C’ + D’+A).(A’+ C + D).(A’+ B + C’)

Thus, minimized boolean expression is-

(A’ + B’) (A’ + C’) (A + B + C)

12. Minimize the following boolean function

QUESTION BANK WITH SOLUTION BCS302

7

13. Write Verilog code for the following digital circuits.

a) AND gate

b) NOT gate

AND gate

//AND gate using Structural modeling

module and_gate_s(a,b,y);

input a,b;

output y;

and(y,a,b);

endmodule

//AND gate using data flow modeling

module and_gate_d(a,b,y);

input a,b;

output y;

assign y = a & b;

endmodule

//AND gate using behavioural modeling

module nAND_gate_b(a,b,y);

input a;

output y;

always @ (a,b)

y = a & b;

endmodule

QUESTION BANK WITH SOLUTION BCS302

8

NOT gate

//NOT gate using Structural modeling

module not_gate_s(a,y);

input a;

output y;

not(y,a);

endmodule

//NOT gate using data flow modeling

module not_gate_d(a,y);

input a;

output y;

assign y = ~a;

endmodule

//NOT gate using behavioural modeling

module not_gate_b(a,y);

input a;

output reg y;

always @ (a)

y = ~a;

endmodule

QUESTION BANK WITH SOLUTION BCS302

9

;

14. Develop Verilog code for the following combinational logic circuts using Structural and
Dataflow description.

a) 2x4 Decoder b) 4x1 Multiplexer

2x4 Decoder

15. Explain Binary Adder (Parallel Adder) with a neat diagram

The 4-bit binary adder using full adder circuits is capable of adding two 4-bit

output w,x,y,z;
input a,b;

assign z = a & b;
end module

module decoder_2_4(a,b,w,x,y,z);

assign w = (~a) & (~b)
assign x = (~a) & b;
assign y = a & (~b);

4x1 Multiplexer

module m41(out, i0, i1, i2, i3, s0, s1);
output out;
input i0, i1, i2, i3, s0, s1;
assign y0 = (i0 & (~s0) & (~s1));
assign y1 = (i1 & (~s0) & s1);
assign y2 = (i2 & s0 & (~s1));
assign y3 = (i3 & s0 & s1);
assign out = (y0 | y1 | y2 | y3);
end module

numbers resulting in a 4-bit sum and a carry output as shown in figure below

QUESTION BANK WITH SOLUTION BCS302 BCS302

vtucode.in 10

Since all the bits of augend and addend are fed into the adder circuits simultaneously and the
additions in each position are taking place at the same time, this circuit is known as parallel
adder.

Let the 4-bit words to be added be represented by,

A3A2A1A0= 1111 and B3B2B1B0= 0011

The bits are added with full adders, starting from the least significant position, to form the sum
it and carry bit. The input carry C0 in the least significant position must be 0. The carry output
of the lower order stage is connected to the carry input of the next higher order stage. Hence
this type of adder is called ripple-carry adder.

In the least significant stage, A0, B0 and C0 (which is 0) are added resulting in sum S0 and carry
C1. This carry C1 becomes the carry input to the second stage. Similarly in the second stage,
A1, B1 and C1 are added resulting in sum S1 and carry C2, in the third stage, A2, B2 and C2 are
added resulting in sum S2 and carry C3, in the third stage, A3, B3 and C3 are added resulting in
sum S3 and C4, which is the output carry.

Thus the circuit results in a sum (S3S2S1S0) and a carry output (Cout).

16. What is Decoder? Explain 2 x 4 decoder with a neat diagram.

A decoder is a combinational circuit that converts binary information from n input
lines to a maximum of 2n unique output lines.

QUESTION BANK WITH SOLUTION BCS302 BCS302

vtucode.in 11

Here the 2 inputs are decoded into 4 outputs, each output representing one of the minterms of
the two input variables.

The output Y0 is active, ie., D0= 1 when inputs A= B= 0,
D1 is active when inputs, A= 0 and B= 1,
D2 is active, when input A= 1 and B= 0,

D3 is active, when inputs A= B= 1.

17. What is Multiplexer? Explain 4 : 1 Multiplexer with a neat diagram.

A multiplexer or MUX, is a combinational circuit with more than one input line, one
output line and more than one selection line.

Each of the four inputs I0 through I3, is applied to one input of AND gate.
Selection lines S1 and S0 are decoded to select a particular AND gate. The outputs of
the AND gate are applied to a single OR gate that provides the 1-line output.

QUESTION BANK WITH SOLUTION BCS302 BCS302

vtucode.in 12

To demonstrate the circuit operation, consider the case when S1S0= 10. The AND
gate associated with input I2 has two of its inputs equal to 1 and the third input
connected to I2. The other three AND gates have atleast one input equal to 0, which
makes their outputs equal to 0. The OR output is now equal to the value of I2, providing
a path from the selected input to the output.
The data output is equal to I0 only if S1= 0 and S0= 0; Y= I0S1‘S0‘.
The data output is equal to I1 only if S1= 0 and S0= 1; Y= I1S1‘S0.
The data output is equal to I2 only if S1= 1 and S0= 0; Y= I2S1S0‘.
The data output is equal to I3 only if S1= 1 and S0= 1; Y= I3S1S0.
When these terms are ORed, the total expression for the data output is,

Y= I0S1’S0’+ I1S1’S0 +I2S1S0’+ I3S1S0.

QUESTION BANK WITH SOLUTION BCS302 BCS302

vtucode.in 13

18. Implement the following boolean function using 4: 1 multiplexer,
F (A, B, C) = Σm (1, 3, 5, 6).

Solution:
Variables, n= 3 (A, B, C)
Select lines= n-1 = 2 (S1, S0)
2n-1 to MUX i.e., 22 to 1 = 4 to 1 MUX
Input lines= 2n-1 = 22 = 4 (D0, D1, D2, D3)

Implementation table:
Apply variables A and B to the select lines. The procedures for implementing the

function are:

i. List the input of the multiplexer
ii. List under them all the minterms in two rows as shown below.
The first half of the minterms is associated with A‘ and the second half with A. The
given function is implemented by circling the minterms of the function and applying
the following rules to find the values for the inputs of the multiplexer.

1. If both the minterms in the column are not circled, apply 0 to the corresponding input.
2. If both the minterms in the column are circled, apply 1 to the corresponding input.
3. If the bottom minterm is circled and the top is not circled, apply C to the input.
4. If the top minterm is circled and the bottom is not circled, apply C‘ to the input.

Multiplexer Implementation:

QUESTION BANK WITH SOLUTION BCS302 BCS302

vtucode.in 14

19. F(P, Q, R, S)= Σm (0, 1, 3, 4, 8, 9, 15)

Solution:
Variables, n= 4 (P, Q, R, S)
Select lines= n-1 = 3 (S2, S1, S0)
2n-1 to MUX i.e., 23 to 1 = 8 to 1 MUX
Input lines= 2n-1 = 23 = 8 (D0, D1, D2, D3, D4, D5, D6, D7)

Implementation table:

Multiplexer Implementation:

