¥
s "_!-!l-_'pif
S v B

W 84

v, AKSHAYA -

W s i e
i

) i

A

\‘, INSTITUTIONS
INNOVATION
A COUNGL

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

5 Approved by AICTE, New Delhi, Affiliated to VTU, Belagaavi, Recognised by GOK, ' {0
NBA Accredited (CSE) ‘
(balapura Post, Lingapura, Koratagere Road, Tumkur- 572 106, Karnataka

\
A

< Tumkr

DIGITAL DESIGN AND COMPUTER ORGANIZATION
(BCS304)

Prepared by:
Mrs.Shivaranjani S.S
Assistant Professor
Department of AI&DS
AIT, Tumkur

Digital Design and Computer Organization(BCS302)

Module-2

Combinational Logic

Syllabus:

Combinational Logic: Introduction, Combinational Circuits, Design Procedure, Binary Adder- Subtractor,
Decoders, Encoders, Multiplexers. HDL Models of Combinational Circuits — Adder, Multiplexer,
Encoder. Sequential Logic: Introduction, Sequential Circuits, Storage Elements: Latches, Flip-Flops.

Introduction
* Logic circuits for digital systems may be combinational or sequential.

« A combinational circuit consists of logic gates whose outputs at any time are
determined from only the present combination of inputs.

* A combinational circuit performs an operation that can be specified logically by a set
of Boolean functions.

» sequential circuits employ storage elements in addition to logic gates. Their outputs
are a function of the inputs and the state of the storage elements

» Because the state of the storage elements is a function of previous inputs, the outputs
of a sequential circuit depend not only on present values of inputs, but also on past
inputs, and the circuit behavior must be specified by a time sequence of inputs and
internal states.

combinational circuit
A combinational circuit consists of an interconnection of logic gates.

» Combinational logic gates react to the values of the signals at their inputs and
produce the value of the output signal, transforming binary information from the
given input data to a required output data.

o o
— e —>
. Combinational
ninputs —> T —> m outputs
; cireutt :
— —

FIGURE 4.1
Block diagram of combinational circuit

Dr Ajay V G, Dept. of CSE , SVIT Page 1

Digital Design and Computer Organization(BCS302)

The n input binary variables come from an external source; the m output variables are
produced by the internal combinational logic circuit and go to an external destination.

Each input and output variable exists physically as an analog signal whose values are
interpreted to be a binary signal that represents logic 1 and logic 0.

If the registers are included with the combinational gates, then the total circuit must
be considered to be a sequential circuit.

For n input variables, there are 2m possible combinations of the binary inputs.

For each possible input combination, there is one possible value for each output
variable. Thus, a combinational circuit can be specified with a truth table that lists the
output values for each combination of input variables.

Design procedure

The procedure to design combinational circiut involves the following steps:

1. From the specifications of the circuit, Determine the required number of inputs
and outputs and assign a symbol to each.

2. Derive the truth table that defines the required relationship between inputs and
outputs.

3. Obtain the simplified Boolean functions for each output as a function of the
input variables.

4. Draw the logic diagram and verify the correctness of the design (manually or by
simulation).

Example for design Procedure

Code Conversion (Convert BCD to Excess-3 Code)

A code converter is a circuit that makes the two systems compatible even though
each uses a different binary code.

Since each code uses four bits to represent a decimal digit, there must be four input
variables and four output variables. We designate the four input binary variables by
the symbols A, B, C, and D, and the four output variables by w, X,y ,and z .

ADD 3 to BCD to get Excess -3 Code

Dr Ajay V G, Dept. of CSE , SVIT Page 2

Digital Design and Computer Organization(BCS302)

Table 4.2
Truth Table for Code Conversion Example
Input BCD Output Excess-3 Code

A B C D w x v z
0 0 0 0 0 0 1
0] 0] 0 1 O 1 0] 0]
0 0] 1 0 0 1 0] 1
0] 0] 1 1 O 1 1 0]
0 1 0 0 O 1 1 1
0 1 0 1 1 0 0 0
0 1 1 0] 1 0 0 1
0 1 1 1 1 0 1 0
1 (0] 0 0 1 0 1 1
1 0] 0 1 1 1 0 0]

Note that four binary variables may have 16 bit combinations, but only 10 are listed
in the truth table. The six bit combinations not listed for the input variables are don’t-
care combinations.

D z 2 D

AB 00 01 11y 10 AB 00 01 11 10

III“ ”ni nm ' "': ”y,
00 \ 1 1 \ 1 00

", N " ”, ",
01 g{\ 9 01

iy, ey "y Iz B g,

11 U X X X 11

A iy 1y, 3 Iz iy
10 (X I x 10

—

B

’ A
& "o
D e A D ST R—
AB 00 01 11 10 AB 00 01 11 10
mg, ", "y ”, ”mig, ”y "y ”,
00 1 1 00 1 1
I",. ne - ", lll‘ n ", n
01 1 1 01 1 1
) ”ey5 "y . "y, B "y, ”y s my. ”g, B
11 >, € X X X 11 X X X X
A A
"y, ", "y, ”y, iy ”,, my, s
10 1 X > < 10 1 X b ¢
|
D D
z =D’ y=CD + C'D’

implemented with three or more levels of gates:
z = DY
yi= CD +&"D" = CD-+ €'+ D}’
¥»= B'€C +-B'D + BC'D" =RB"(€C *+ D) + BC"D'
= B'(€ + D) + B(C + D)’
w=A+ BC+ BD =A + B(C + D)

Dr Ajay V G, Dept. of CSE , SVIT Page 3

Digital Design and Computer Organization(BCS302)

CcD

J v

r\] y
w-—% (C +D)Y

C +D

) D—\—D— N

FIGURE 4.4
Logic diagram for BCD-to-excess-3 code converter

Binary Adder- Subtractor
» A combinational circuit that performs the addition of two bits is called a half adder .
* The addition of three bits (two significant bits and a previous carry) is a full adder.

* A binary adder—subtractor is a combinational circuit that performs the arithmetic
operations of addition and subtraction with binary numbers.

» The half adder design is carried out first, from which we develop the full adder.
» Connecting n full adders in cascade produces a binary adder for two n -bit numbers.
Half Adder

e Half Adder circuit needs two binary inputs and two binary outputs.

e output variables produce the sum and carry. We assign symbols x and y to the two
inputs and S (for sum) and C (for carry) to the outputs.

e The C output is 1 only when both inputs are 1. The S output represents the least
significant bit of the sum.

e The truth table for the half adder is listed in Table 4.3 .

Dr Ajay V G, Dept. of CSE , SVIT Page 4

Digital Design and Computer Organization(BCS302)

Table 4.3 The simplified Boolean functions for the two
Half Adder outputs can be obtained directly from the truth
X y C § table. The simplified sum-of-products expressions
are
0 0 0 0
_ ' '
0 10 1 S=x'y +xy
1 0 0 1
f-\-. —_— s Tk
1 1 1 0

The logic diagram of the half adder implemented in sum of products is shown in Fig.
4.5(a) . It can be also implemented with an exclusive-OR and an AND gate as shown in
Fig. 4.5(b)

¥ —
y' —
S
\ 2 —_ \ \
] S
)] y 7
x — \ ¢ 4
_\“‘ /
(a)S=xy" +x'y (b)S=xDy
C=xy C=xy

FIGURE 4.5
Implementation of half adder

Full Adder

« A full adder is a combinational circuit that forms the arithmetic sum of three bits. It
consists of three inputs and two outputs.

* Two of the input variables, denoted by x and y , represent the two significant bits to
be added. The third input, z , represents the carry from the previous lower significant
position. The two outputs are designated by the symbols S for sum and C for carry.

Dr Ajay V G, Dept. of CSE, SVIT Page 5

Digital Design and Computer Organization(BCS302)

A

Table 4.4

Full Adder
E oy ®| € 3 - y - y
0 0 0 0 0 x muoo MIm m}ll mzm muoo mlm mzu mzm
0 0 1 0 i 0 1 1 0 1
O 1 0 0 1- m, ms m; mg m, s m; g
0 1 1 -1_. 0 41 1 1 x41 1 1 1
1 000 L — —
i U 1 _l_ 0 (a)S=x"y'z+x'vz' +xy'z +xyz (b)C=xy+xz+yz
L 1 0 _1, 0 FIGURE 4.6
L__ L _1 1 1 KMapsforfull adder

S=x"y'z+x'yvz' +xy'z" + xyz
C=xy+xz+yz

* The logic diagram for the full adder implemented in sum-of-products form is shown

in Fig. 4.7

D .

. 1 D—
=D DD
T

x 1

FIGURE 4.7
Implementation of full adder in sum-of-products form

Dr Ajay V G, Dept. of CSE , SVIT Page 6

Digital Design and Computer Organization(BCS302)

Implementation of Full adder using 2 half adder

We know that
S=xy’z’ + xX’yz’ + Xyz + X’y’z
=2 (XY +OY)HZ(XYHXY”)
=2 (XY YLy +XY)
=2’(x By)+tz(x Dy)
=2’ A+zA’
=z P A
S=z ®d x By

C=xy+xz+yz
=xy+xz(y+y’)+yz(x+x’)
=Xy+Xyz+xy’z+xyz+x’yz

=xy+xyz+z(xy’+x’y)
=xy(1+2)+z(x"y)

C=xy+z(xDy)

Jv L/

FIGURE 4.8

Implementation of full adder with two half adders and an OR gate

Binary Adder:

A binary adder is a digital circuit that produces the arithmetic sum of two binary numbers.
It can be constructed with full adders connected in cascade, with the output carry from
each full adder connected to the input carry of the next full adder in the chain.

* n-bit numbers requires a chain of n full adders or a chain of one-half adder and n-1

full adders.

* Eg:4bit numbers requires a chain of 4 fulladders or one HA and 3FAs.

» interconnection of four full-adder (FA) circuits to provide a four-bit binary ripple

carry adder

* The augend bits of A and the addend bits of B are designated by subscript numbers
from right to left, with subscript O denoting the least significant bit. The carries are

Dr Ajay V G, Dept. of CSE , SVIT

Page 7

Digital Design and Computer Organization(BCS302)

connected in a chain through the full adders. The input carry to the adder is CO, and it
ripples through the full adders to the output carry C4.

By Aj B, A B, A By, A
C, G, C,
FA < FA < FA < FA «— ()
C, S, S, Y S
FIGURE 4.9

Four-bit adder

To demonstrate with a specific example, consider the two binary numbers A = 1011
and B = 0011. Their sum § = 1110 is formed with the four-bit adder as follows:

Subscript i 3 2 1 0

Input carry 0 1 1 0 C;

Augend 1 0 1 A;

Addend 0 0 1 B;

Sum 1 1 1 0 S;

Output carry 0 0 1 1 Cin

The input carry CO in the least significant position must be 0.
The value of Ci+1 in a given significant position is the output carry of the full adder.

The carry propagation time is an important attribute of the adder because it limits the
speed with which two numbers are added.

Dr Ajay V G, Dept. of CSE , SVIT Page 8

Digital Design and Computer Organization(BCS302)

1. write Verilog code for 4 bit parallel adder using full adder as component.
module fourbit_full_adder(a, b, sum, cout) ;
input [3:0] a;
input [3:0] b;
output [3:0] sum;
output cout;
wire c¢l, ¢2, €¢3;

full adder faO(a[0], b[0], 0, sum[0], cl);
full adder fal(a[l]l, b[1l], cl, sum[l], c2);
full adder fa2(a[2], b[2], c2, sum[2], c3);
full adder fa3(a[3], b[3], c3, sum[3], cout);

endmodule

module full adder (a, b, cin, sum, cout);
input a,; b, cin;

output sum, cout;

assign sum = a“b”cin;

assign cout = (a&b) | (b&cin) | (cins&a):
endmodule

2.Write Verilog code for 4 bit adder .

HDL (Dataflow: Four-Bit Adder)

module binary_adder (

output [3: O] Sum,
output C_out,
input [3: 0] A, B,
input C_in

):

assign {C_out, Sum} = A + B + C_in;
endmodule

There are several techniques for reducing the carry propagation time in a parallel adder.
The most widely used technique employs the principle of carry lookahead logic .

Carry Propagation

» Carry Propagation The addition of two binary numbers in parallel implies that all the
bits of the augend and addend are available for computation at the same time.

» Consider the circuit of the full adder shown in Fig. 4.10 . If we define two new binary
variables.

Dr Ajay V G, Dept. of CSE , SVIT Page 9

Digital Design and Computer Organization(BCS302)

» Giis called a carry generate , and it produces a carry of 1 when both Ai and Bi are 1,
regardless of the input carry Ci .

* Piis called a carry propagate , because it determines whether a carry into stage i will
propagate into stage i + 1

Half adder Half adder

[T ————= m—— e — ===
I | | I

A; A P, |

1 :]‘)_—\ Fi h :. .‘_‘\ PJ':D £1

BI : H__/ : | U__/ i S;

| | : / |
| I

l G | | |
[| | Cot G
| | | I
e]]

C;

FIGURE 4.10

Full adder with P and G shown

* PE':AI'G}B{ SE':PJ:@(:;
G; = A;B; Ciy1 = G; + P,

Binary ADDER-Subtractor

The addition and subtraction operations can be combined into one circuit with one
common binary adder by including an exclusive-OR gate with each full adder.

A four-bit adder—subtractor circuit is shown in Fig. 4.13 . The mode input M controls the
operation. When M = 0, the circuit is an adder, and when M = 1, the circuit becomes a
subtractor. Each exclusive-OR gate receives input M and one of the inputs of B.

When M = 0, we have B @0 = B. The full adders receive the value of B , the input carry is
0, and the circuit performs Aplus B. When M =1, wehave B@ 1=B’and CO=1.The B
inputs are all complemented and a 1 is added through the input carry. The circuit performs
the operation A plus the 2’s complement of B . (The exclusive-OR with output V is for
detecting an overflow.)

Dr Ajay V G, Dept. of CSE , SVIT Page 10

Digital Design and Computer Organization(BCS302)

B; Az B> Az B, Ay By Ap

C, o <, el <,

FIGURE 4.13
Four-bit adder—subtractor (with overflow detection)

Binary Addition Example:

\, ; 3 = 3 = =

\'; ‘cuit becomes a ‘
S8btractor. €
(@) M=
O ol [o | =3
(l‘lg —) I\ O ‘
{
D | 0
= O L2 C‘:_O FA Cfl FA S FA Co '
3 1 i i 1
= Sy = L S> = | S =l So == ®)
{ 3 =

)
FIGURE 4.13

Binary Subtraction Example:

' B
1M = 1, the 3 = - e Bi ‘

it becomes a -‘
Eseion & \ Bl - 1
' © |_ \) | C = |
@rowiN) O
: Z LI)

Dr Ajay V G, Dept. of CSE , SVIT Page 11

Digital Design and Computer Organization(BCS302)

DECODERS

* A Decoder is a combinational circuit that converts binary information from n input
lines to a maximum of 27 unique output lines.

» The decoders presented here are called n -to- m -line decoders, where m ... 2» . Their
purpose is to generate the 27 (or fewer) minterms of n input variables.

» [Each combination of inputs will assert a unique output. The name decoder is also

used in conjunction with other code converters, such as a BCD-to-seven-segment
decoder.

2:4 decoder (1 of 4 decoder)

A 2 to 4 decoder is a combinational logic circuit that takes two input lines, typically labeled
A and B, and generates four output lines, usually labeled QO, Q1, Q2, and Q3. The decoder
analyzes the input combination and activates the corresponding output line

Inputs Outputs Truth Table
Binary 0 110 W 0 O
Decoder —» Q: 1 0/l0 01 0
5 Q, | 11|00 07
ABRAE peae
Inverter }QFAB
D—QFAB
Binary Decoded

Inputs Output

D—QfAB
B —
HDC }Q3=AB

Data Lines

Dr Ajay V G, Dept. of CSE , SVIT Page 12

Digital Design and Computer Organization(BCS302)

3:8 Decoder
e A 3to 8 decoder has three inputs (x,y,z) and eight outputs (DO to D7).
« Based on the 3 inputs one of the eight outputs is selected.
o The truth table for 3 to 8 decoder is shown in the below table.

e From the truth table, it is seen that only one of eight outputs (DO to D7) is selected
based on three select inputs.

e From the truth table, the logic expressions for outputs can be written as follows:

Table 4.6
Truth Table of a Three-to-Eight-Line Decoder
T Inputs Outputs
S-to-5-11In¢
Decoder X Y z Do D1 Dz D_g D4 Ds Dﬁ Dy
z o0 0 0 0 0 0 0 0 0
7 50 % 0 0 1 0 1 0 0 0 0 0 0
< [0 1 0 0 0 1 0 0 0 0 0
v 5! % 0 1 1 0 0 0 1 0 0 0 0
B L0 0 o 0o 0o 0o 1 0 0 0
X > 2 1 0 1 0 0 0 0 0 1 0 0
¢ 1 1 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 0 0 0 0 1

Dr Ajay V G, Dept. of CSE , SVIT Page 13

Digital Design and Computer Organization(BCS302)

D— Do=x"y'z’
[>o

l 37 D, =x'y'z

37 Dy =%'3z"

N

Y

Y

FIGURE 4.18
Three-to-eight-line decoder

Decoders with enable inputs can be connected together to form a larger decoder circuit.
Implement 4:16 decoder using 2 3:8 decoder.
two 3-to-8-line decoders with enable inputs connected to form a 4-to-16-line decoder.

When w =0, the top decoder is enabled and the other is disabled. The bottom decoder outputs
are all 0’s, and the top eight outputs generate minterms 0000 to 0111.

When w =1, the enable conditions are reversed: The bottom decoder outputs generate
minterms 1000 to 1111.

r 3 X 8 b -
Y decoder Dy to D;

z E

3X8

decoder

E

Dyto Dys

FIGURE 4.20
4 X 16 decoder constructed with two 3 X 8 decoders

Combinational Logic Implementation

Dr Ajay V G, Dept. of CSE , SVIT Page 14

Digital Design and Computer Organization(BCS302)

Implement the following boolean function using 3:8 decoder
Sx,y,2)=3(1,2,4,7)
C(x,y,2)=>@3,56,7)

Since there are three inputs and a total of eight minterms, we need a three-to-eight-line decoder.

U A
|
x —22 2 J
y |y 3xs 3
decoder 4
7 s — >«
6
7
FIGURE 4.21

Implementation of a full adder with a decoder

The decoder generates the eight minterms for x, y , and z . The OR gate for output S forms the logical sum
of minterms 1, 2, 4, and 7. The OR gate for output C forms the logical sum of minterms 3, 5, 6, and 7.

Exemplify(Implement) the following function using 3:8 decoder

) f(ab, c,d)=Ym (L2 3,4)
i) fab,c d=Ym(3,5,7)

Encoder

* An encoder is a digital circuit that performs the inverse operation of a decoder.

Dr Ajay V G, Dept. of CSE, SVIT Page 15

Digital Design and Computer Organization(BCS302)

* An encoder has 2" (or fewer) input lines and n output lines.
* 4:2 Encoder(n=2)

4:2 Encoder
Ouputs Inputs | Outputs
D —» = Q 3 U2 D DC Q QC
\) 000 711(0°0
o 02 Q% 00 10(0 1
Inputs), —| ENCOder 010010
' R0 T s
Dy —» 0000/x x

8:3 Encoder

 an encoder is the octal-to-binary encoder whose truth table is given in Table 4.7

» It has eight inputs (one for each of the octal digits) and three outputs that generate the corresponding
binary number. It is assumed that only one input has a value of 1 at any given time.

» The encoder can be implemented with OR gates whose inputs are determined directly from the truth
table

* OQutput z is equal to 1 when the input octal digitis 1, 3, 5, or 7.

* Outputy is 1 for octal digits 2, 3, 6, or 7, and

» output x is 1 for digits 4, 5, 6, or 7.

Dr Ajay V G, Dept. of CSE , SVIT Page 16

Digital Design and Computer Organization(BCS302)

D0 ———*

1 1

v
>

n —m—

8:3

B — >
y

Encoder

B EEE—
D4 Z

A

s —m—mm

g —mm*

v —

Table 4.7
Truth Table of an Octal-to-Binary Encoder

Inputs Outputs
Dq D1 Dz D3 D4 D; DﬁD‘] Xy 1

—
—
—
—
—
—
—
—
—

~_-u_—

]
—
=
—

—

—

—

—
—
—
—

—
—
=
[a—
—
—
—
—
—

p—
—
= —= —
—

1=D;+Dy+ D5+ Dy
0 }’:D2‘|‘D3‘|‘D6+D?
L y=D,4Ds+ D+ Dy

e
—_—
e
_

—

—
—

= = =
—
=)

I —

p—

—

—_— — — =

—

» The encoder defined in Table 4.7 has the limitation that only one input can be active at any given
time. If two inputs are active simultaneously, the output produces an undefined combination. For
example, if D3 and D6 are 1 simultaneously, the output of the encoder will be 111 because all three
outputs are equal to 1.

» To resolve this ambiguity, encoder circuits must establish an input priority to ensure that only one
input is encoded.

» The output 111 does not represent either binary 3 or binary 6. To resolve this ambiguity, encoder
circuits must establish an input priority to ensure that only one input is encoded. If we establish a higher
priority for inputs with higher subscript numbers, and if both D3 and D6 are 1 at the same time, the output
will be 110 because D6 has higher priority than D3. Another ambiguity in the octal-to-binary encoder is

Dr Ajay V G, Dept. of CSE , SVIT Page 17

Digital Design and Computer Organization(BCS302)

that an output with all 0’s is generated when all the inputs are 0; but this output is the same as when DO is

equal to 1. The discrepancy can be resolved by providing one more output to indicate whether at least one

input is equal to 1.

Priority Encoder

A priority encoder is an encoder circuit that includes the priority function.

The operation of the priority encoder is such that if two or more inputs are equal to 1 at the same

time, the input having the highest priority will take precedence.

The truth table of a four-input priority encoder is given in Table 4.8

Table 4.8
Truth Table of a Priority Encoder
Inputs Outputs
.D.u. .D1 .Dz D; X Y Vv
0 0 0 0 X X 0
1 0 0 0 0 0 1
X 1 0 0 0 1 1
X X 1 0 1 0 1
X X X 1 1 1 1

In addition to the two outputs x and y , the circuit has a third output designated by V ; this is a

valid bit indicator that is set to 1 when one or more inputs are equal to 1.

. If all inputs are 0, there is no valid input and V is equal to 0. The other two outputs are not

inspected when V equals 0 and are specified as don’t-care conditions.

Input D3 has the highest priority, so, regardless of the values of the other inputs, when this input is

1, the output for xy is 11 (binary 3).
D2 has the next priority level. The output is 10 if D2 = 1, provided that D3 = 0, regardless of the

values of the other two lower priority inputs. The output for D1 is generated only if higher priority

inputs are 0.
DO | D1 | D2 D3 | X Y |V
0 0 0 0 X X |0
0 0 0 1 1 1 1
0 0 1 0 1 0 1

DyD,

00

01

Dy
10

DD;

00

D,

00

01

Dy

10

Digital Design and Computer Organization(BCS302)

0 0 1 1 1 1 1
0 1 0 0 0 1 1
0 1 1 1 1
0 1 1 0 1 0
0 1 1 1 1 1 1
1 0 0 0 0 0 1
1 0 0 1 1 1 1
1 0 1 0 1 0 1
1 0 1 1 1 1 1
1 1 0 0 0 1 1
1 1 0 1 1 1 1
1 1 1 0 1 0 1
1 1 1 1 1 1 1
D;
D, DOL ’
D, '
D :
_'r\ v
Dy I
FIGURE 4.23

Four-input priority encoder

Multiplexer

» A multiplexer is a combinational circuit that selects binary information from one of many input lines
and directs it to a single output line

* The selection of a particular input line is controlled by a set of selection lines

« normally, there are 2" input lines and n selection lines whose bit combinations determine which input is

selected.

Dr Ajay V G, Dept. of CSE , SVIT Page 19

Digital Design and Computer Organization(BCS302)

(1}

I 2r1 <1

12
| M
N
P ¥ (OUTPUT)
) u
T
=

: X
Iy
Sh S Sp |

SELECTION INPUTS
GENERAL BLOCK DIAGRAM OF 2™x1 MULTIPLEXER

Design 2:1 Multiplexer

S Y
1
h—1o “ 1
MUX Y 0 ik :& .
I, 1
Truth Table >
S (a) Logic diagram
(b) Block diagram FIGURE 4.24

Two-to-one-line multiplexer

y =51+ sh

Boolean Expression

A 2-to-1 multiplexer consists of two inputs 10 and 11, one select input S and one output Y. Depending
on the select signal, the output is connected to either of the inputs. Since there are two input signals,
only two ways are possible to connect the inputs to the outputs, so one select is needed to do these
operations.

Dr Ajay V G, Dept. of CSE , SVIT Page 20

Digital Design and Computer Organization(BCS302)

4:1 Multiplexer

5)
—

h)

Y

2)
—

75)
L/

T

So

(a) Logic diagram

Above figures represents block diagram ,truth table and implementation using basic gates of
4:1 multiplexer.

4x1 Multiplexer has four data inputs 10, 11, 12 & 13, two selection lines SO & S1 and one output Y. One of
these 4 inputs will be connected to the output based on the combination of inputs present at these two
selection lines.

8:1 multiplexer

Dr Ajay V G, Dept. of CSE , SVIT Page 21

Digital Design and Computer Organization(BCS302)

* Multiplexer circuits can be combined with common selection inputs to provide
multiple-bit selection logic. As an illustration, a quadruple 2-to-1-line multiplexer
Is shown in Fig. 4.26 . The circuit has four multiplexers, each capable of selecting
one of two input lines. Output YO can be selected to come from either input AO or
input BO. Similarly, output Y1 may have the value of Al or B1, and so on. Input
selection line S selects one of the lines in each of the four multiplexers. The enable
input E must be active (i.e., asserted) for normal operation.

* As shown in the function table, the unit is enabled when E = 0. Then, if S = 0, the
four A inputs have a path to the four outputs. If, by contrast, S = 1, the four B inputs
are applied to the outputs. The outputs have all 0’s when E = 1, regardless of the
value of S.

|)
—) >
Az | I
A { ™y
O .
E s Output ¥
5 |)
— 1 > all O's
o o select .1
- o 1 sclect B
2 -—ll_/" Function table
B | Y
—1
5 — ot
(select)

B
(enable)

FIGURE 4.26
o Quadruple two-to-one-line multiplexer

Design 4:1 MUX using only 2:1 MUX

Dr Ajay V G, Dept. of CSE , SVIT Page 22

Digital Design and Computer Organization(BCS302)

Implement 8:1 Mux using 4:1mux and 2:1mux

8:1 MUX Truth Table

Y=555T,+ SSEIo55 TS

+ S,SQSI IH"‘S,%SIS."'SOS&%I{\T SOSaS(I:F

Implement using multiplexer F (X,y,2)=(1, 2,6, 7)

X v z F
i 4 <1 MUX
0 0 0|0 F_._ &
0] (0] 1 1 A
— s,
= (0] 1 0 1 F=z
n 3 0 1 1 0
z ———t F
n-1=2 select lines Lo Yie F=o 2 |
1 0 —
= 1 1 0 1 _
2n-1 =4 data inputs T 1 1)1 FTU 1 ——3

(a) Truth table (b) Multiplexer implementation

Dr Ajay V G, Dept. of CSE , SVIT Page 23

Digital Design and Computer Organization(BCS302)

Implement using multiplexer F (A, B, C, D) = (1, 3, 4,11, 12, 13, 14, 15)

A B C D|F
o 0 0 0|0 F_—p =
o o o 1§ 8 < 1 MUX
0 0 1 0|0 gp_p < So
0 0 1 1|1 B S,
A S5
0 1 0 0|1 gp_p
0 1 0 1]0
D * 0
0 1 1 0|0 g_g :
0 1 1 1]0 >C - F
2
1 o o0 010 gF—o 0 3
1 0 0 1|0 a
1 0 1 0|0 g_p 5
1 0 1 1|1) .
1 1 0 0|1 Ln_, T—?
1 1 0 11
1 1 1 01 _
11 o1 1|1 £

FIGURE 4.28
Implementing a four-input function with a multiplexer

Three-State Gates

A multiplexer can be constructed with three-state gates—digital circuits that exhibit
three states.

Two of the states are signals equivalent to logic 1 and logic O as in a conventional
gate.

The third state is a high-impedance state in which

(1) the logic behaves like an open circuit, which means that the output appears to be
disconnected,

(2) the circuit has no logic significance, and

(3) the circuit connected to the output of the three-state gate is not affected by the
inputs to the gate. Three-state gates may perform any conventional logic, such as
AND or NAND. However, the one most commonly used is the buffer gate.

The graphic symbol for a three-state buffer gate is

Normal input A Output Y= Aif C=1
High-impedance if C =0

Control input C

The buffer has a normal input, an output, and a control input that determines the state of the
output. When the control input is equal to 1, the output is enabled and the gate behaves like
a conventional buffer, with the output equal to the normal input. When the control input is
0, the output is disabled and the gate goes to a high-impedance state, regardless of the value
in the normal input. The high-impedance state of a three-state gate provides a special

Dr Ajay V G, Dept. of CSE , SVIT Page 24

Digital Design and Computer Organization(BCS302)

feature not available in other gates. Because of this feature, a large number of three-state
gate outputs can be connected with wires to form a common line without endangering
loading effects.

. The construction of multiplexers with three-state buffers is demonstrated in Fig. 4.30
. Figure 4.30(a) shows the construction of a two-to-one-line multiplexer with 2 three-state
buffers and an inverter. The two outputs are connected together to form a single output
line. (Note that this type of connection cannot be made with gates that do not have three-
state outputs.) When the select input is O, the upper buffer is enabled by its control input
and the lower buffer is disabled. Output Y is then equal to input A . When the select input
is 1, the lower buffer is enabled and Y is equal to B .

A | ™ %
] n

VWWQ

—V

(a) 2-to-1-line mux

—1S

Select 2% 4 1

Y=AS’+ BS 1% decoder 2

Enable EN

(b) 4-to-1-line mux

HDL models of combinational circuits

* The logic of a module can be described in any one (or a combination) of the following
modeling styles:

» Behavioral modeling using procedural assignment statements with the keyword always.

e Gate-level (structural) modeling describes a circuit by specifying its gates and how
they are connected with each other. Gate-level modeling using instantiations of
predefined and user-defined primitive gates

» Dataflow modeling is used mostly for describing the Boolean equations of
combinational logic, Dataflow modeling using continuous assignment statements with
the keyword assign.

Dr Ajay V G, Dept. of CSE , SVIT Page 25

Digital Design and Computer Organization(BCS302)

Table 4.10
Some Verilog HDL Operators
Symbol Operation Symbol Operation
+ binary addition
- binary subtraction
& bitwise AND && logical AND
I bitwise OR I logical OR
n bitwise XOR
S bitwise NOT ! logical NOT
== equality
> greater than
< less than
Truth table i {} concatenation
FIGURE 4.31 % conditional

Relationship of Verilog constructs to truth tables, Boolean equations, and schematics

Werite a Verilog Program For Binary Adder(4bit)

HDL (Dataflow: Four-Bit Adder)

module binary_adder (

output [3: 0] Sum,

output C_out,

input [3: 0] A, B,

input C_in
);

assign {C_out, Sum} = A + B + C_in;
endmodule

Write a Verilog code for 2:1 mux(multiplexer)

Using cond itional operator

condition ? true-expression : false-expression;

sy =31+ sl
0 2]
1

Using Data flow Model

module mux2 1(S,I,Y);
input S;

input [1:0]I;

output Y;

assign Y=(~S&I[0]|S&I[1]);
endmodule

module mux2 1(I10,I1,S,Y);

input S ;

input I0,I1 ;

output Y ;

assign Y=5?I1:10;

endmodule

Dr Ajay V G, Dept. of CSE , SVIT

Page 26

Digital Design and Computer Organization(BCS302)

Al
| Al
5 Al
r Al

Behavioral modelling for 2:1 Mux

Using Case Statement

imodule mux2 1(I0,Il1,S,Y);
input 10,11 ;

input S ;

output Y ;

reg Y;

always @ (S or I0 or Il)
tbegin

icase (9S)

0: Y=10 ;

1: ¥Y=1T1 3

endcase

end

endmodule

using If else statement

module mux2 1(I0,I1,S,Y);
input 10,11 ;
input S ;
output Y ;
reqg Y;
always @ (S ,I0 , I1)
begin

1f (5==0)

Y=10 ;

else Y=I1 ;
end
endmodule

Write Verilog program for 4:1mux using CASE STATEMENT

module mux4 1(I,S,Y);
input [1:01 S5;
input [3:0]I;

Timing Diagram

output Y; ER
reg Y; 3]
always @ (I,S)

begin 2]
case (S) I[1]
0:Y= I[07]; I[0]
12Y= @T[1];
2:¥= T [2]1; B
IE¥= T3 t:ﬂﬂ
endcase S[0]
end

endmodule

AT6l | 6

AD
Al
Al
AD

A 0]

AD
AD
AD

WD G S |

Dr Ajay V G, Dept. of CSE , SVIT

Page 27

Digital Design and Computer Organization(BCS302)

Write a Verilog code for below figure

D

QUG

A TDO—
= D P X X 1 1 1 1
B 0O 0 0 0 1 1 1
) 0 0 1 1 0 1 1
—| ’ g ¥ 0 1 1 0 1
P 8 I 1 1 1 1 1

(a) Logic diagram

HDL Example 4.1 (Two-to-Four-Line Decoder)

Il Gate-level description of two-to-four-line decoder
Il Refer to Fig. 4.19 with symbol E replaced by enable, for clarity.

module decoder_2x4_gates (D, A, B, enable);
output [0:3] D;
input A B;
input enable;
wire A _not,B_not, enable_not;

not
G1 (A_not, A),
G2 (B_not, B),
G3 (enable_not, enable);
nand
G4 (D[0], A_not, B_not, enable_not),
G5 (D[1], A_not, B, enable_not),
G6 (D[2], A, B_not, enable_not),
G7 (D[3], A, B, enable_not);

endmodule

Sequential Logic

» Sequential logic refers to a type of digital logic circuit that uses
memory elements to store information.

» It consists of a combinational circuit to which storage elements are
connected to form a feedback path. The storage elements are devices
capable of storing binary information.

» a sequential circuit is specified by a time sequence of inputs, outputs,
and internal states.

Inputs ———>| o Outputs
Combinational
circuit

Memory
elements

FIGURE 5.1
Block diagram of sequential circuit

Dr Ajay V G, Dept. of CSE , SVIT Page 28

Digital Design and Computer Organization(BCS302)

Differentiate between combinational logic and sequential logic

Combimnational Logic Seqguential Logic Circuits
Circuits

Atd any instant of time, the output AL any instant of time, the output is

Definiticn i= only dependent on the current determined by inputs and prewvious

state of the Inputs. outpuUts
Time is not an important Time is an important parameter. For
Time parameter. timing and synchronizing of different
depaendasmncy circuit elements, a clock signal is
necessary
The output is solely dependent rMemorny is required to store the
hMemory on inputs only . Mo neced for previous state of thie systaerm.
memory
Easy to design and implement The design of these systems requires
Desigr with the help of basic logic basic logic gates and flip flops.
gates
There is no feedback. There is at least one memory
Feadback

element in the feedback path.

They are sasier o implement but They are difficult to implement but
Hardware &

costly, dus to hardwarse. T heir less costlhy than seqguential circuits.
CosSt implementation requires mMmore
hardware
They are faster since all INnputs They are slower, because of the
Speed are applied at the same time. secondary inputs. So, there is a

delay in between inputs. And the
output is gated by a clock signal.

» The storage elements (memory) used in clocked sequential circuits are
called flipflops.

» A flip-flop is a binary storage device capable of storing one bit of

information.
Inputs —— Outputs
Combinational
circuit
Flip-flops
Clock pulses 4,—>
(a) Block diagram
(b) Timing diagram of clock pulses
FIGURE 5.2

Synchronous clocked sequential circuit

Storage Elements:

1)Latches:

» Latches are digital circuits that serve as basic building blocks in the

construction of sequential logic circuits.

» They are bistable, meaning they have two stable states and can be

used to store binary information. Latches are often used for

temporary storage of data within a digital system.

» There are several types of latches, with the most common being the

Dr Ajay V G, Dept. of CSE , SVIT Page 29

Digital Design and Computer Organization(BCS302)

1)SR latch (Set-Reset latch), 2)D latch (Data latch),3) JK latch.

» Storage elements that operate with signal levels (rather than signal
transitions) are referred to as latches ; those controlled by a clock
transition are flip-flops.Latches are said to be level sensitive devices;
flip-flops are edge-sensitive devices.The two types of storage elements
are related because latches are the basic circuits from which all flip-

flops are constructed.

S T | e SOy S

Level Triggering

T LS . ks

Positive-Edge Triggering

v v ‘1 J

Negative-Edge Triggering

SR Latch (Set-Reset Latch):

* The SR latch has two inputs, S (Set) and R (Reset).It has two outputs,
Q and ~Q (complement of Q).

* When S is asserted, Q is set to 1, and when R is asserted, Q is reset
to 0.The SR latch is sensitive to the input conditions, and having both

S and R asserted simultaneously can lead to unpredictable behavior.

0 0 NO CHANGE
(Previous output)

0 1 0 1

1 1 0

1 1 FORBIDDEN

SR Latch with nor gates

1 7‘ S R|QO O
0 R (reset) 0 1 0 1 0
0 0|1 O (afterS=1,R=0)
1 0 110 1
o 0 00 1 (afterS=0,R=1)
0 v S (set) 1 1|0 0 (forbidden)

(a) Logic diagram

FIGURE 5.3 (b) Function table

SR latch with NOR gates

Dr Ajay V G, Dept. of CSE , SVIT Page 30

Digital Design and Computer Organization(BCS302)

where S and R stand for set and reset. It can be constructed from a pair of cross-coupled NOR logic gates.
The stored bit is present on the output marked Q.

While_the S and R inputs are both low, feedback maintains the Q and Q outputs in a constant state,
with Q the complement of Q. If S (Set) is pulsed high while R (Reset) is held low, then the Q output is forced
high, and stays high when S returns to low; similarly, if R is pulsed high while S is held low, then the Q output
is forced low, and stays low when R returns to low.

s
T [T | Timing Diagram of SR latch
R

-
G_L__J
LTI

SR latch with NAND gates

tn
=
12

(after §=1,R=10)

~oo [

1 (afterS=0,R=1)
0 (forbidden)

_0 0 QO =
=Oo=Roo
oo O

(b) Function table

> S
ek

SR latch with control input

S [—
Dot
En § R | Nextstate of 0

0 X X | Nochange

1 0 0 | Nochange

1 | Q= 0;resetstate
0 | Q=1;setstate

1 | Indeterminate

En

(a) Logic diagram (b) Function table

FIGURE 5.5
SR latch with control input

It consists of the basic SR latch and two additional NAND gates. The control input En
acts as an enable signal for the other two inputs. The outputs of the NAND gates stay
at the logic-1 level as long as the enable signal remains at 0. This is the quiescent
condition for the SR latch. When the enable input goes to 1, information from the S or
R input is allowed to affect the latch. The set state is reached with S = 1, R = 0, and
En = 1 active-high enabled). To change to the reset state, the inputs must be S = 0, R
= 1, and En = 1. In either case, when En returns to 0, the circuit remains in its
current state. The control input disables the circuit by applying O to En, so that the
state of the output does not change regardless of the values of S and R . Moreover,
when En = 1 and both the S and R inputs are equal to O, the state of the circuit does

Dr Ajay V G, Dept. of CSE , SVIT Page 31

Digital Design and Computer Organization(BCS302)

not change. These conditions are listed in the function table accompanying the
diagram.

D latch(transparent latch)

A D latch can store a bit value, either 1 or 0. When its Enable pin is HIGH, the value
on the D pin will be stored on the Q output.

The D Latch is a logic circuit most frequently used for storing data in digital systems.
It is based on the S-R latch, but it doesn’t have an “undefined” or “invalid” state
problem.

Datain =D Q— Dataout E g e Descripton
Memo
s 0 ‘ Q)
= E Q T (no change)
1 0 0 Reset Qto 0
D Latch Symbol
1 1 1 SetQto 1
D }
0
En D | Nextstate of 0
En
0 X | Nochange
1 0| Q=0;resetstate
, I 1| Q=1;setstate
P) Q
(a) Logic diagram (b) Function table
FIGURE 5.6
D latch

One way to eliminate the undesirable condition of the indeterminate state in the
SR latch is to ensure that inputs S and R are never equal to 1 at the same time.
This is done in the D latch, shown in Fig. 5.6 . This latch has only two inputs: D
(data) and En (enable). The D input goes directly to the S input, and its
complement is applied to the R input. As long as the enable input is at 0, the
cross-coupled SR latch has both inputs at the 1 level and the circuit cannot

change state regardless of the value of D . The D input is sampled when En = 1.

Dr Ajay V G, Dept. of CSE , SVIT Page 32

Digital Design and Computer Organization(BCS302)

If D = 1, the Q output goes to 1, placing the circuit in the set state. If D = O,

output Q goes to 0, placing the circuit in the reset state.

The graphic symbols for the various latches are shown in Fig. 5.7 . A latch is
designated by a rectangular block with inputs on the left and outputs on the
right. One output designates the normal output, and the other (with the bubble

designation) designates the complement output

—5 e —S — —D -
R o— —R o—— En o——
SR SR D
FIGURE 5.7

Graphic symbols for latches

STORAGE ELEMENTS : FLIP - FLOPS

» Flip-flops are fundamental building blocks in digital electronics and
sequential logic circuits.

» They are bistable multivibrators, like latches, but they are edge-

triggered and use a clock signal to control the timing of state changes.

» Flip-flops are widely used for storing binary information in electronic
systems.

Edge triggered DFF

Table of truth:
& 2 clk D Q Q
o o Q Q
—P> ik o > Clk o——— o 1 Q Q
(a) Positive-edge (a) Negative-edge 1 o o 1
F»IGUR.E 5.11)) 1 1 4 &
Graphic symbol for edge-triggered D flip-flop

Dr Ajay V G, Dept. of CSE , SVIT Page 33

Digital Design and Computer Organization(BCS302)

¥
D —— D o
D latch D latch
(master) (slave)
En En
Clk [>o

e A
The construction of a D flip-flop with two D latches and an inverter is shown in
Fig. 5.9 . The first latch is called the master and the second the slave. The
circuit samples the D input and changes its output Q only at the negative edge
of the synchronizing or controlling clock (designated as Clk). When the clock is
0, the output of the inverter is 1. The slave latch is enabled, and its output Q is
equal to the master output Y . The master latch is disabled because Clk = 0.
When the input pulse changes to the logic-1 level, the data from the external D
input are transferred to the master. The slave, however, is disabled as long as
the clock remains at the 1 level, because its enable input is equal to 0. Any
change in the input changes the master output at Y, but cannot affect the slave
output. When the clock pulse returns to 0, the master is disabled and is isolated
from the D input. At the same time, the slave is enabled and the value of Y is
transferred to the output of the flip-flop at Q . Thus, a change in the output of
the flip-flop can be triggered only by and during the transition of the clock from
1 to O.

Comparison between Latch and Flipflop

LATCH

FLIP — FLOP

Latches do not require clock signal.

Flip — flops have clock signals

A latch is an asynchronous device.

A flip — flop is a svnchronous
device.

Latches are transparent devices i.e.
when theyv are enabled. the output
changes immediately if the input
changes.

A transition from low to high or high
to low of the clock signal will cause
the flip — flop to either change its
output or retain it depending on the
input signal_

A latch is a Level Sensitive device
(Level Triggering is involved).

A flip — flop is an edge sensitive
device (Edge Triggering is
involved).

Latches are simpler to design as
there is no clock signal (no careful
routing of clock signal is required).

When compare to latches. flip —
flops are more complex to design as
thev have clock signal and it has to
be carefully routed. This is because
all the flip — flops in a design should
have a clock signal and the delay in
the clock reaching each flip — flop

must be minimum or negligible.

The operation of a latch is faster as
they do not have to wait for any
clock signal.

Flip - flops are comparatively slower
than latches due to clock signal.

The power requirement of a latch is
less.

Power requirement of a flip — flop is
more.

A latch works based on the enable
signal_

A flip — flop works based on the
clock signal.

Dr Ajay V G, Dept. of CSE , SVIT

Page 34

Digital Design and Computer Organization(BCS302)

construction of an positive edge-triggered D flip-flop uses three SR latches

clk D S R Q Q@
0 1
} s Assume(previous output)
o
0 0 1 1 0 1
) R 0 No Change
0 1 1 1 No Change
1 1 0o 1 1 0
b _
0 0 1 1 No change
FIGURE 5.10 1 0 1 0 0 1
D-type positive-edge-triggered flip-flop
JK FLIPFLOP
J
P 2 ! Table 5.1
Flip-Flop Characteristic Tables
K — 1>k
JK Flip-Flop
Cllk —> Cik e Q' K
J K | Qi+ 1)
0 0 (1) No change
(a) Circuit diagram (b) Graphic symbol 0 1 0 Reset
FIGURE 5.12 L 0 (1 Set
JK flip-flop 1 1 Q'(1) Complement

When J =1and K=0,D =Q’ + Q = 1, so the next clock edge sets the output to 1.
When J =0and K=1, D = 0, so the next clock edge resets the output to 0.
When both J = K =1 and D = Q, the next clock edge complements the output.

When both J] = K =0 and D = Q, the clock edge leaves the output unchanged.

Dr Ajay V G, Dept. of CSE , SVIT Page 35

Digital Design and Computer Organization(BCS302)

T Flipflop
Inputs Outputs
Toggle T Q Input CLK T Q“ .l Action
Pin 0 X |1Qn No change
1 0 |Qn No change
— 1 1 |Cn Toggle
Q Input A I
A CLK ——— :
Clock : :
T — :
D Symbol: T Flip-flop 0

T Flipflop using JK Flipflop

T =0 (J = K= 0), a clock edge does not change the output. When T=1 (J =K =1), a

clock edge complements the output. The complementing flip-flop is useful for

designing binary counters.

—1> cik

K P———

(a) From JK flip-flop

FIGURE 5.13 ™ o0 No Change
T flip-flop N 1 toggle

Implementation of TFF using DFF

The T flip-flop can be constructed with a D flip-flop and an exclusive-OR gate as
shown in Fig. (b). The expression for the D inputisD =T @ Q=T'Q + TQ When T =
0, D = Q and there is no change in the output. When T = 1, D = Q" and the output
complements.

D=T"Q

D=T'Q+TQ’

Dr Ajay V G, Dept. of CSE , SVIT Page 36

Digital Design and Computer Organization(BCS302)

— >

— > Clk P

(b) From D flip-flop

» Characteristic tablesA characteristic table defines the logical properties of a flip-flop by

describing its operation in tabular form. They define the next state (i.e., the state that

results from a clock transition) as a function of the inputs and the present state

» Q(t) denotes the state of the flip-flop immediately before the clock edge, and

» Q(t+ 1) denotes the state that results from the clock transition.

Table 5.1
Flip-Flop Characteristic Tables
JK Flip-Flop D Hip-Fle
K £+ 1 T Flip-Flop
J Q(t + 1) D o+ 1)
0 0 | 00 No change T Qit+1)
0 1 |0 Reset 0 |0 Reset
1 0 |1 Set 1 1 Set 0 (1 No change
1 1] Q1 Complement 1 Q'(1) Complement

Characteristic equation

» It is the Boolean expression in terms of its input and output which determines
the next state of the flipflop.

T FF
@\T 0 1
1
0 0 0 ;
0 1 1 |
1 0 1 1| \U
1 1 0 Q(t+1)=TQ’+QT’

Dr Ajay V G, Dept. of CSE , SVIT Page 37

Digital Design and Computer Organization(BCS302)

DFF
QI IO o) N N 1
0 0 0 3
0 1 1 0 |
1 0 0 1 U
1 1 1 Q(t+1)=D
JKFF
o
QT Yk [Q(éﬁ N e
0 |
oloi ol I TS
0| O | (@)
t A
o[t]o], R
i I I] K'a. ;
' o Jo | Bk el &
A [C
L) 1 O
1 b j1 JO

Write Verilog code for Flipflops

SR flipflop JK Flipflop

module sr(clk,s,x,q); module jk(input j, input k, input clk, output reg q);
input clk,s,r;

output q; always ¢ (posedge clk)

req q; .
always @(posedge clk) | case ({],k})
begin 2'000 : g <= q;
ot it 2001 2 q <= 0;
2'b00: q <= q; // No change A § %L
2'001: q <= 1'b0; // reset 20l 2 q =g
2'p10: q <= 1'bl; // set endcase

2'bll: q <= 1'bx; // Invalid inputs endmodule
endcase

end

endmodule

Dr Ajay V G, Dept. of CSE , SVIT Page 38

Digital Design and Computer Organization(BCS302)

D flipflop

imodule dataff (clk,d,q):
input clk,d;
output reqg q;
always @ (posedge clk)
i begin
if(d == 0)
q <=0 ;
else
q=1L
end
endmodule

T Flipflop

imodule toggleff (clk,t,q):

input clk,t;
output reg g
always @ (posedge clk)

: begin

1E (L ==0)

q <=q-
else

g =~qdr
end
endmodule

Dr Ajay V G, Dept. of CSE , SVIT

Page 39

QUESTION BANK WITH SOLUTION BCS302

MODULE1 & 2
1.

Minimize the following boolean function-

F(A, B, C,D)=5m(0, 1,2, 5,7, 8,9, 10, 13, 15)

Solution:
cD
AB TD D CD cD
AB 1 1 1
0 1 3 —
AB 1 1
4 5 7 6
AB 1 1
12 3 15 14
AB| 1 1 1
8 9 1 10

Thus, minimized boolean expression is-

F(A,B,C,D)=BD +C’D + BD’
2. Minimize the following boolean function

F(A, B,C,D)=3m(1,3,4,6,8,9, 11,13, 15) + =d(0, 2, 14)

cD
AB TD ,CD| CD cD
AB || x 1 1 X
— 1 3 2
AB 1 1
4 5 7 6
AB 1 1 X
12 13 ns 14
AB | | 1 1 1
8 9 1 10

Thus, minimized boolean expression is-

F(A,B,C,D)=AD+B’D +B’C’ + A’'D’

QUESTION BANK WITH SOLUTION BCS302

3. Minimize the following boolean function

F(A, B, C)==m(0, 1, 6, 7) + =d(3, 5)

BC
A BC BC BC BC
— 11 1] X
A — 1 3 2
A X 1 1
4 5 — 6

Thus, minimized boolean expression is

F(A, B, C) = AB + A'B’

4. Minimize the following boolean function

F(A, B, C)=Xm(1, 2, 5, 7) + £d(0, 4, 6)

BC
A BC BC BC BC
. X 1 1
A 0 1 3 2
A X 1 1 X
= 5 7 —

Thus, minimized boolean expression is

F(A,B,C)=A+B’ +C’

QUESTION BANK WITH SOLUTION BCS302

5. Minimize the following boolean function

F(A, B, C)==m(0, 1,6, 7) + =d(3, 4, 5)

BC
A BC BC BC BC

— 11 1] X

A 0 1 3 2

A X | x| 1 | 1]

Thus, minimized boolean expression is

F(A, B,C)=A+B’

6. Minimize the following boolean function

F(A, B, C, D) =3m(0, 2, 8, 10, 14) + d(5, 15)

cD
AB TD, ©CTD D cD
AB 1 1
0 1 3 —
AB X
4 5 7 6
AB X 1
12 13 15 4
AB 1 1
8 9 11 0

Thus, minimized boolean expression is

F(A, B,C,D)=ACD’ +B'D’

QUESTION BANK WITH SOLUTION BCS302

7. Minimize the following boolean function-

F(A, B, C,D)=3m(3, 4,5,7,9, 13, 14, 15)

cD
AB TD ©TD ©D cD
AB 1
0 1 3 2
A || 1 1 1
— 5 7 6
AB] 1 1
12 3 — 14
AB 1
8 9 11 10

Thus, minimized boolean expression is

F(A,B,C,D)=A’'BC’+ A’CD + AC’'D + ABC

8. Minimize the following boolean function

F(W, X,Y,Z)=3m(1,3,4,6,9, 11,12, 14)

YZ
WX YZ Yz Y2 YZ
WX 1 1
0 1 3 2
WX 1 1
4 5 7 § 6
we |1 1
12 13 15 14
WX 1 1
8 9 1] 10

Thus, minimized boolean expression is-

FW,X,Y,Z2)=X® Z

QUESTION BANK WITH SOLUTION BCS302

9. Minimize the following boolean function

F(A,B,C)=T((0,3,6,7)

Bc 00 01 11 10

10 (1 1101 1

0 1 3 2}

1| 1/|[0fl 0

a 5 7 6|

Thus, minimized boolean expression is-

(A" + B’) (B> +C’) (A +B + ()

10. Minimize the following boolean function

F(A,B,C,D)= TU (3,5,7,8,10,11,12,13)

CD
AB 00 01 11 10

00 1 1 0 1

0 1 3 2
01 1 0 0 1

4 5 7 6
11 0 0 1 1

[12] 13 15 14{
10 0 1 | 0 0 I

8 g 11 10

Thus, minimized boolean expression is-

(C+D’+B”).(C’+D’+A).(A’+C+D). (A’ +B+C’)

QUESTION BANK WITH SOLUTION BCS302

11. Minimize the following boolean function

F(P,Q,R)=TT (0,3,6,7)

BC
A 00 01 1 10

Thus, minimized boolean expression is-

A +B)YAN +C)A+B+0C)

12. Minimize the following boolean function

F(A,B,C,D)=T1(3,5,7,8,10,11,12,13)

cD
ABN. 00 01 1 10
00 1 1 [F] 1
0 1 3 2
o1/ 1 m |£J 1
4 5 7 6
11 m [&' 1 1
2 13 15 14
o/l 1+ | e
8 9 11 10

Thus, minimized boolean expression is-

(C+D+B).(C +D+A).A+C+D).A+B+C)

QUESTION BANK WITH SOLUTION BCS302

13. Write Verilog code for the following digital circuits.
a) AND gate
b) NOT gate
AND gate
//AND gate using Structural modeling
module and_gate_s(a,b,y);
input a,b;

output y;
and(y,a,b);

endmodule

//AND gate using data flow modeling
module and_gate d(a,b,y);
input a,b;

output vy,
assign y = a & b;
endmodule

//AND gate using behavioural modeling
module nAND_gate b(a,b,y);
input a;

output y;

always @ (a,b)
y =aé&hb;

endmodule

QUESTION BANK WITH SOLUTION BCS302

NOT gate

//NOT gate using Structural modeling
module not_gate s(a,y);
input a;

output y;

not(y,a);

endmodule

//NOT gate using data flow modeling
module not_gate d(a,y);
input a;

output y;
assign y = ~a;
endmodule

//NOT gate using behavioural modeling
module not_gate b(a,y);
input a;

output reg y;

always @ (a)

y = ~a;

endmodule
|

QUESTION BANK WITH SOLUTION BCS302

14. Develop Verilog code for the following combinational logic circuts using Structural and
Dataflow description.

a) 2x4 Decoder b) 4x1 Multiplexer

2x4 Decoder
module decoder_2_4(a,b,w,x,y,z);

output w,x,y,z;
input a,b;

assign w = (~a) & (~b)
assign x = (~a) & b;
assigny = a & (~b);
assignz =a &b;

end module

4x1 Multiplexer

module m41(out, i0, i1, i2, i3, sO, s1);
output out;

input i0, i1, i2, i3, s0O, s1;

assign y0 = (i0 & (~s0) & (~s1));
assign yl = (i1 & (~s0) & s1);

assign y2 = (i2 & sO0 & (~s1));

assign y3 = (i3 & sO & s1);

assignout = (y0 | y1 | y2 | y3);

end module

15. Explain Binary Adder (Parallel Adder) with a neat diagram

The 4-bit binary adder using full adder circuits is capable of adding two 4-bit
numbers resulting in a 4-bit sum and a carry output as shown in figure below

B3 A3 B2 A2 B1 A1 Bo Ao
J J J |
FA FA . FA FA Cin
Cya (4) Ca Ca (3) Ca C2 @ Cq Cq 1) Co=0p—

Cout S3 S2 S4 So

QUESTION BANK WITH SOLUTION BCS302 B

Since all the bits of augend and addend are fed into the adder circuits simultaneously and the
additions in each position are taking place at the same time, this circuit is known as parallel
adder.

Let the 4-bit words to be added be represented by,
A3A2A1A0= 1111 and B3B2B1Bo= 0011

Significant place . & A |
Inputcarry b SR
Augend word A : 113 1
Addend word B : 0011
1 001 0« Sum
T
Crutput Carry

The bits are added with full adders, starting from the least significant position, to form the sum
it and carry bit. The input carry Co in the least significant position must be 0. The carry output
of the lower order stage is connected to the carry input of the next higher order stage. Hence
this type of adder is called ripple-carry adder.

In the least significant stage, Ao, Boand Co (which is 0) are added resulting in sum So and carry
Ci1. This carry Ci becomes the carry input to the second stage. Similarly in the second stage,
A1, Biand Ci are added resulting in sum Si and carry Cz, in the third stage, A2, B2and Cz are
added resulting in sum S2 and carry C3, in the third stage, A3, B3 and C3 are added resulting in
sum S3 and Cs, which is the output carry.

Thus the circuit results in a sum (S3S2S1S0) and a carry output (Cout).

16. What is Decoder? Explain 2 x 4 decoder with a neat diagram.

A decoder is a combinational circuit that converts binary information from n input
lines to a maximum of 2n unique output lines.

—> DO
A= 2x4 > DI
B—> Decoder | | D2
— D3

vtucode.in 10

QUESTION BANK WITH SOLUTION BCS302 B

D1=AB

D2=AB

D3=AB

JOUC

Inputs Outputs X
A B d, d, d, d.
0 0 1 0 0 0 1]
0 1 0 1 0 1
1 0 0 0 1 2
1 1 0 0 0 1 3

Here the 2 inputs are decoded into 4 outputs, each output representing one of the minterms of
the two input variables.

The output Yo is active, ie., Do= 1 when inputs A= B=0,
D1 is active when inputs, A= 0 and B=1,
D2 is active, when input A= 1 and B=0,

D3 is active, when inputs A= B=1.

17. What is Multiplexer? Explain 4 : 1 Multiplexer with a neat diagram.

A multiplexer or MUY, is a combinational circuit with more than one input line, one
output line and more than one selection line.

Each of the four inputs Io through I3, is applied to one input of AND gate.

Selection lines S1 and So are decoded to select a particular AND gate. The outputs of

the AND gate are applied to a single OR gate that provides the 1-line output.

vtucode.in 11

QUESTION BANK WITH SOLUTION BCS302 B

m——
iNi=g |
D

&

S

Truth table
Iy
[—— 4x1
Iy — MUX 0 0 lg
I 0 1 Iy
1 0 I,
| | 1 1 Iy
5, So

To demonstrate the circuit operation, consider the case when S1So= 10. The AND
gate associated with input I2 has two of its inputs equal to 1 and the third input
connected to I2. The other three AND gates have atleast one input equal to 0, which
makes their outputs equal to 0. The OR output is now equal to the value of I2, providing
a path from the selected input to the output.

The data output is equal to lo only if S1= 0 and So=0; Y= I0S1°So".

The data output is equal to [1 only if S1=0 and So=1; Y=11S1‘So.

The data output is equal to [2 only if S1=1 and So= 0; Y= 12S1S0".

The data output is equal to I3 only if S1= 1 and So= 1; Y= 13S1So.

When these terms are ORed, the total expression for the data output is,

Y=10S1’So’+ I1S1’So +12S1S0’+ 13S1S0.

vtucode.in 12

QUESTION BANK WITH SOLUTION BCS302 B

18.Implement the following boolean function using 4: 1 multiplexer,
F(A,B,O)=Xm(1,3,5, 6).

Solution:

Variables, n=3 (A, B, C)

Select lines=n-1 =2 (S1, So)

2n-1to MUX 1.e., 22to 1 =4 to 1 MUX
Input lines= 2n-1=22=4 (Do, D1, D2, D3)

Implementation table:
Apply variables A and B to the select lines. The procedures for implementing the

function are:

i. List the input of the multiplexer

ii. List under them all the minterms in two rows as shown below.

The first half of the minterms is associated with A‘ and the second half with A. The
given function is implemented by circling the minterms of the function and applying
the following rules to find the values for the inputs of the multiplexer.

1. If both the minterms in the column are not circled, apply 0 to the corresponding input.
2. If both the minterms in the column are circled, apply 1 to the corresponding input.

3. If the bottom minterm is circled and the top is not circled, apply C to the input.

4. If the top minterm is circled and the bottom is not circled, apply C* to the input.

Do

c|o Kil 2 K3
©

Dn D3

c |4 7
0 C c
Multiplexer Implementation:
C
1 0
ez, _,_7Do
C 1 1
Pox Y
D2 2
D3
51 So
A —I

vtucode.in 13

QUESTION BANK WITH SOLUTION

19. F(P,Q,R,S)=Zm (0, 1, 3,4, 8, 9, 15)

Solution:

Variables,n=4 (P, Q, R, S)
Select lines=n-1 =3 (Sz, S1, So)

2n-1to MUXi.e., 23to 1 =8 to 1 MUX

Input lines= 2n-1= 23= 8 (Do, D1, D2, D3, Da, Ds, Ds, D7)

Implementation table:

BCS302

Multiplexer Implementation:

vtucode.in

Dy D1 D: D3 | Dy Ds D Dr
s (O] 2 (G 5 |6 | 7
s |yl (o) 10 | 11|12 | 13 14 |(i5)
1 1 0 s S 0 0 S
s
.—| Dﬂ
- D51
¥ D» T
D: g
D: MUX
Ds
D
D
0] S 51 Sp
P - |
Q
R

14

