3

Your g ot R S0ess

AKSHAYA INSTITUTE OF TECHNOLOGY, TUMKUR
Department of Electronics & Communication Engineering

Module 2 and 3 Notes for

“Addressing Modes, Instruction Sets,
Stack Pointer and Programs”

[BEC405A]

Prepared by:

Dr. Vijaya Kumar HR
Associate Professor
Department of ECE.

Akshaya Institute of Technology

Tumakuru

| Microcontrollers [Semester | 4]

AKSHAYA INSTITUTE OF TECHNOLOGY

Lingapura, Obalapura Post, Koratagere Road, Tumakuru - 572106
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

() VISION

) MISSION

To produce competent engineering professionals
in the field of Electronics and Communication
Engineering by imparting value based quality
technical education to meet the societal needs and
todevelop socially responsible citizens.

Program Specific Outicomes (PS0s)

After Successful Completion of Electronics an

Communication Engineering Program

Students will be able to

1. Apply fundamental knowledge of core.
Electronics and Communication Engineering
in the analysis, design and development of
Electronics Systems as well as to interpret and
synthesize experimental data leading to valid
conclusions.

. Exhibit the skills gathered to analyze, design,

develop software applications and hardware
products in the field of embedded systems and

allied areas.

M1: To provide strong fundamentals and

technical skills in the field of Electronics and
Communication Engineering through effective
teaching learning process.

M2: Enhancing employability of the students
by providing skills in the fields of VLSI,
Embedded systems, Signal processing, etc.,
through Centre of Excellence.

Ma3: Encourage the students to participate in co-
curricular and extra-curricular activities that
creates a spirit of social responsibility and

Program Educational Objectives (PEOs)

PEOL1: Graduates exhibit their innovative ideas
and management skills to meet the day to day

technical challenges.

PEO2: Graduates utilize their knowledge and
skills for the development of optimal solutions to
the problems in the field of Electronics and

Communication Engineering..

PEO3: Graduates exhibit good interpersonal
skills, leadership qualities and adapt themselves

for life-long Learning

e

MICROCONTROLLERS Semester 4
Course Code BLC4D3A CIE Marks ol)
leaching Hours/Week({L:1:F) 3:0:0 SEE Marks | 50
l'otal Hours of Pedagogy 40 T'otal Marks| 100
LCredits 3 Exam Hours 3
Examunation typelskER) I'heory

Course objectives:
This course will enable students to:

» Understand the difference between Microprocessor and Microcontroller and embedded
microconirollers.

» Analyze the basic architecture of 8051 microcontroller.

» Program 8051 microcontroller using Assembly Language and C.

Understand the operation and use of inbuilt Timers/Counters and Serial port of 8051
» Understand the interrupt structure of 8051 and Interfacing IO devices using IYO ports of 8051.

Teaching-Learning Process|General Instructions)

The samples strategies, which the teacher can use to accelerate the attainment of the various
course outcomes are listed in the following:
1. Lecture method (L) does not mean only the traditional lecture method, but a

different type of teaching method may be adopted to develop the outcomes.
2. Show Video/animation tilms to explain the functioning of various techniques.

3. Encourage collaborative(Group)Learning in the class
4. Ask at least three HOTS(Higher-order Thinking) questions in the class, which

promotes critical thinking

5. Adopt Problem Based Learning (PBL), which fosters students” Analytical kills, develop
thinking skills such as the ability to evaluate, generalize, and analyze information rather
than simply recall it.

6. Show the different ways to solve the same problem and encourage the students to
come up with their own creative ways to solve them.

7. Discuss how every concept can be applied to the real world and when that's possible,
it helps improve the students’ understanding.
Give Programming Assignments.

Klodule-T{#Hrs)

Microcontroller: Microprocessor Vs Microcontroller, Micro L1,L2
controller & Embedded Processors., Processor Architectures-Harvard WV
Princeton & RISC Vs CISC | 8051 Architecture- Registers, Pin diagram, /O
ports functions, Internal Memory organization. External Memory (ROM &
RAM) interfacing. {Text book 1-1.1,Text book 2-1.0,1.1,3.03.1.3.2.3.3 Text
book 3-Pg 5-9)

Module-2({ SHrs)

Instruction Set: 8051 Addressing Modes, Data Transfer Instmuctions, | L1,L2
A rithmetic instructions, Logical Instructions, Jump & Call Instructions
Stack & Subroutine Instructions of 8051 (with examples in assembly
Language). (Text book 2- Chapter 5.6,7.8, Additional reading Refer
Texthook 3. Chapter 3 for combplete understandine of instructions with

Module-3 (8 Hrs)

Timers Counters & Serial port programming: LII_.JEL

Basics of Timers & Counters, Data types & Time delay in the B051 using
. Programming 8051 Timers, Mode 1 & Mode 2 Programming, Counter
Programming (Assembly Language only). (Text book 2- 3.4, Text book 1-
7.1,9.1,9.2)

Basics of Seral Communication., 8051 Connection o RS232,
Programming the 8051 to transfer data serially & to receive data serially
using C.{ Text book 2- 3.5, Text book 1- 10.1,10.2,10.3 except assembly
language programs, 10.5)

Module-4 (8 Hrs)

Interrupt Programming: Basics of Interrupts, 8051 Interrupts, Programming L1,LZ2,

Timer Interrupts, Programming Serial Communication Interrupts, Interrupt L3
Priority in 8051({Assembly Language only) { Text book 2- 3.6, Text book 1-
11.1,11.2,11.4, 11.5)

Module-5 (8 Hrs)

L'O Port Interfacing & PProgramming: IY'O Programming in 3051 C, LCD [L1,L2, L3

interfacing, DAC 08308 Intertacing, ADC 0804 interfacing, Stepper motor
interfacing, DIC motor control & Pulse Width Modulation (PWhHhI) using C
omly. (Text book 1-7.2, 12.1, 13.1, 13.2, 17.2, 17.3)

Course outcome {Course Skill Set)
At the end of the course, students will be able to:

1. Dwescribe the difference between Microprocessor and Microcontroller, Types of

Processor Architectures and Architecture of 8051 Microcontroller.

. Discuss the types of 8051 Microcontroller Addressing modes & Instructions with

2
Assembly Language Programs.
3. Explain the programming operation of TimersCounters and Serial port of
8051 Microcontroller.
4. Ilustrate the Interrupt Structure of 8051 Microcontroller & its programming.
5. Develop C programs to interface L0 devices with 8051 Microcontroller.

LA ssessment Details (both CIE and SEE)
The weightage of Continuous Internal Evaluation (CIE) is 509 and for Semester End Exam (SEE)is
50%.The minimum passing mark for the CIE is 40%of the maximum marks(20marks out of 50) and for
the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). The student is
declared as a pass in the course if he/she secures a minimum of 40%% (40 marks out of 100) in the sum
total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.
Continuous Internal Evaluation:

component.

the syllabus. The average of the two tests shall be scaled down to 25 marks

LI Any two assignment methods mentioned in the 220B2.4, if an assignment is project-based then
only one assignment for the courses hall be planned. The schedule for assignments shall be
planned properly by the course teacher. The teacher should not conduct two assignments at the end
of the semester if two assignments are planned. Each assignment shall be conducted for 25 marks.
(If two assignments are conducted then the sum of the two assignments shall be scaled down to 25
marks)

assignment/s marks.

taxonomy as per the outcome defined for the course.
Semester-End Examination:
Theory SEE will be conducted by University as per the scheduled timetable, with common question
papers for the course (duration 03 hours).
1. The question paper will have ten questions. Each question is set for 20marks.
2. There will be 2questions from each module. Each of the two questions under a module (with a
maximum of 3 sub-questions), should have a mix of topics under that module.
3. The students have to answer 5 full questions, selecting one full question from each module.
4. Marks scored shall be proportionally reduced to50 marks

[0 There are 25marks for the CIE's Assignment component and 25 for the Intermal Assessment Test

[0 Each test shall be conducted for 25marks.The first test will be administered after 40-50% of the
coverage of the syllabus, and the second test will be administered after 85-90% of the coverage of]

[0 The final CIE marks of the course out of 50 will be the sum of the scale-down marks of tests and|

Internal Assessment Test question paper is designed to attain the different levels of Bloom’s

Sugpested Learning Resources:
TEXT BOOKS
1. The “8B051 Microcontroller and Embedded Systems — Using Assembly and C”,
Muhammad Ali Mazidi and Janice Gillespie Mazidi and Rollind. Mckinlay; Phi,
2006 f Pearson, 2006,
2.“The 8051 Microcontroller”, Kenneth j. Ayala, 3™ edition, Thomson/Cengage
Learning.
3. “Programming And Customizing The 8051 Microcontroller” Myke Predko Tata
Mc Graw-Hill Edition 1999 (reprint 2003).
REFERENCEBOOKS:
1. “The 8051 Microcontroller Based Embedded Systems”, Manish K Patel,
McGraw Hill, 2014, ISBN: 978-93-329-0125-4.
2. “Microcontrollers: Architecture, Programming, Interfacing and System Design”™, Raj
Kamal, Pearson Education, 2005.

Web links and Video Lectures{e-Resources):
https:// youtu.be/pA 6K INgW Tow?si=z(qqeXQq50dYL_-s

MODULE 2 and Module 3

ADDRESSING MODES AND INSTRUCTION SETS
Stack Pointer and Programs

By

Dr. Vijaya Kumar HR
Associate Professor, Dept. of ECE
AIT, Tumkur, Karnataka

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

VYVVYVYY

vV

Criteria for Choosing a
Microcontroller

Following must be kept in mind while choosing a
microcontroller

Speed

Packaging

Power consumption

The amount of RAM and ROM on chip

The number of I/O pins and the timer on chip

How easy to upgrade to higher performance or lower power-
consumption versions

Cost per unit

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

Definition of Addressing Mode

~ The CPU can access data in various way. The data could be in a
register , or in memory, or to be provided as an immediate data.
The various way of accessing data are called addressing mode.

Instruction

Mnemonics or opcode Operand

Operand : Registers / A memory location / Immediate data
AorRn / director @ Ri / # data

~The way by which the address of the operand (source or
destination operand) are specified in the instruction is known as
addressing mode.

Note @ The various addressing mode of microprocessor are
determined when it was designed, and therefore it cannot be changed
by programmer.

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

Addressing Mode of 8051

»8051 micro controller supports the following addressing modes.

1) Immediate addressing,
2) Register addressing

3) Direct addressing

4) Indirect addressing,

9) Index addressing mode (External Data Moves)

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

Immediate Addressing

~In immediate addressing mode the operand is specified within
the instruction itself. In this "data" is part of the instruction.

Note : The mnemonic for immediate data is the pound sign (#). '#' sign is
used in the instruction to indicate the “immediate” data

[Opcode (#n) I Next Byte(s)]Source Only

Instruction Data

For Example:
1) MOV A, #n : Move 8 bit number n(n= 00 to FFH) immediately to accumulator.

MOV A, #30H
2) MOV Rr, #n : Move 8 bit number n(n= 00 to FFH) immediately to Rr(Rr is RO to R8 of

current register bank,B,P0 to P3)
MOV B,#30H MOV RO,#30H MOV R7,#30H, MOV P0,#30H MOV P3,#30H

3) MOV DPTR, #nn : Move the immediate 16 bit data nn(hn=0000 to FFFFH) to the DPTR
MOV DPTR, #1234H

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

Register Addressing

» In the register addressing mode the operands are in the registers.
» The register addressing modes occurs between register A and

RO to R7. The programmer can select a register bank by
modifying bits 4 and 3 in the PSW. [

Opcode (R1) }

instruction Source
Or
Destination
| RO-R7
For Example: ' Data
1) MOVA, RO : Copy data from the register RO to register A
2) ADD A, R1 : Add the content of R1 and A. Store the resultin A
3) ANL A, R2 : AND each bit of A with the same bit of register R2.
4) Add the contents of register R3 and R4 from bank 2 . Store the result
inA
MOV PSW, 00010000 B : Select register Bank 2

Dr. Vijaya Kumar HR, ;
Associate. Prof, Dept. of MOV A, R3 : Copy the content R3 to A

ECE, AIT, Tumkuru ADDA, R4 : Add content A and R4. Store the resultin A.

~

Direct Addressing

~In direct addressing mode, the address of the operand is specified by
an 8-bit address in the instruction.

~Using this mode one can access internal data RAM and SFRs, directly.
Internal RAM uses addresses from O0H to 7FH to address each byte.
The SFR addresses existfrom 80H to FFH.

Opcode (Add)

Instruction Source
Or
Destination

Address In Ram

For Example: Data
1) MOVA, 80H : Copy data from the port 0 to register A
2) MOV 80H, A : Copy data from the register A to port 0
3) MOV 0OFO0, 12H : Copy data from RAM location 12H to register B
4) MOV 8CH, R7 : Copy data from the resister R7 to timer 0 high byte
5) MOV 5CH, A : Copy data from register A to RAM location 5CH
6) MOV OAS8, 77H : Copy <iata from RAM location 77H to |E register

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

Direct Addressing- Continued Direct Addressing- Continued

SFR ADDRESS (HEX) BANK ADDRESS BANK ADDRESS
A 0EO REGISTER {(HEX) REGISTER (HEX)
B OF0

DPL 82 0 RO 00 2 RO 10
DPH 83 0 R1 01 2 R1 1

IE 0AS8 0 R2 02 2 R2 12
';’0 ggs 0 ° R3 03 2 R3 13

P1 90 0 R4 04 2 R4 14
P2 0AOQ 0 R5 0S 2 RS 15
P3 080 0 R6 06 2 R6 16
CON & 0 R7 07 2 R7 17
PSW 0DO

SBUF 99 1 RO 08 3 RO 18
SCON 98 1 R1 09 3 R1 19
SP 81 1 R2 0A 3 R2 1A
o 1 R3 0B 3 R3 1B
THO 8C 1 R4 0C 3 R4 1C
TLO 8A 1 R5 0D 3 RS 1D
TH1 8D 1 R6 OF 3 R6 1€
T“ 86 1 R7 OF 3 R7 iF

>

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

Indirect Addressing

An indirect addressing mode instruction specifies a register which
holds address of an operand.

~In this mode, only registers RO or R1 may be used to hold the
address of one of the data location in RAM from address 00H to FFH.

Opeoce (87p)
Source
Or
Destingtion
Address In Ram ROOrRI]
Data Address

Note : The symbolused forindirectaddressingis the "at" sign, which is printed as @.
@Rp means register R1 or R0, addressing internal RAM locations from 00H to FFH.

For Example :
1) MOV A, @ RO : Copy contents of memory location, whose address is
specified in RO of selected bank to accumulator.
2) ADDA. @ R1 :Add the contents of memory location, whose address is

specified in R1 and accumulator. Store the resultin A.

3) ANLA, @ RO : AND each bit of A with same bit of the contents
of address contained in RO. Store resultin A.

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

Only two register are used for the operation
rO AND rl in indirect addressing mode
In order to access @ was used with r0, rl

©@r0

@rl

Example:

1. r0<=#10h

2. 10h==>
mova, @r0

Indirect Addressing (contd..)

~Advantage:

It makes accessing a data dynamics rather than static or in the

case of direct addressing mode.

Forexamples :

MOV A, #55H MOV R1, # 06 Count
MOV 40, A MOV A, # 55H Data
MOV 41, A MOV RO, # 40 Memory Location
MOV 42, A UP MOV@RO,A
MOV 43, A INC RO
MOV 44, A DJNZ R1, UP
MOV 45, A END

»CAUTION :

The number in register Rp must be a RAM or an SFR address
Only Registers, RO and R1 (8-bit wide) can be

Dr. Vijaya K H R, Associate. Prof, Dept.
used for pointer in indirect addressing mode. r-Vijaya Kumar HR, Associate. Prof, Dep

of ECE, AIT, Tumkuru

External Data Moves(Index Addressmg)

~In the indexed addressing mode, only the program memory can be
accessed. The program memory can only be read.

~This addressing mode is preferred for reading look up tables in
the program memory.

~Either the DPTR or PC can be used as Index register.
For Examples :

17 MOVCA, @A+ DPTR : Copy the code byte, found at the ROM
address formed by adding A and the DPTR,
toA.

2) MOVCA @A+PC ‘Copy the code byte, found at the ROM
address formed by adding A and the PC,to A

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

’—ﬂ

8051 |

Read Write Read Write Read

A Register Data Data

RAM and

External

ROM

MOVX @ DPTR

MOVCA, @A + DPTR

MOVC A, @A + PC
PC + A

o J " .
External addressina usina MOVX and MOVC

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

movc A, @A+DPTR

=>» A(8bit) = 61h, DPTR(16bit)=1200h.

= A+ DPTR = 61h + 1200h =1261h.

=» Due to @, then 1261h = memory location
=>» Memory location in terms of look up table

=> A € VALUES IN LOOK UP TABLE OF memory location 1261h
if look up table contain 23h, A=23h

movc A, @A+PC

=>» A(8bit) = 61h, PC(16bit)=1200h €= PC.

= A+PC=> 61h +1200h =1261h.

=» Due to @, then 1261h = memory location
=>» Memory location in terms of look up table

=> A € VALUES IN LOOK UP TABLE OF memory location 1261h
if look up table contain 23h, A=23h

An X 1s added to the MOV mnemonics to serve as a reminder that the data move is
external to the 8051, as shown in the following table.

Mnemonic Operation

MOVX A,@Rp Copy the contents of the external address in Rp to A
MOVX A,@DPTR Copy the contents of the external address in DPTR to A
MOVX @Rp,A Copy data from A to the external address in Rp

MOVX @DPTR,A Copy data from A to the external address in DPTR

The following table shows examples of external moves using register and indirect
addressing modes:

Mnemoni¢ Operation
MOVX @DPTR,A Copy data from A to the 16-bit address in DPTR
MOVX @R0,A Copy data from A to the 8-bit address in RO

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

External Data Moves(Index Addressing)

CAUTION
Al external data moves must involve the A register.
Rp can address 256 bytes; OPTR can address 64K bytes.
MOVX is normally used with external RAM or 1/0 addresses.

Note that there are two sets of RAM addresses between 00 and OFFh: one internal and one
external to the 8051,

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

8051 Instruction Sets

DATA TRANSFER ARITHMETIC LOGICAL BOOLEAN PROGRAM BRANCHING
MOV ADD ANL CLR UmP
MOVC ADDC ORL SETB AJMP
MOVX SuBB XRL MOV SJMP
PUSH INC CLR JC J74
POP DEC CPL JNC JNZ
XCH MUL RL JB CJNE
XCHD DIV RLC JNB DINZ
DAA RR JBC NOP
RRC ANL LCALL
SWAP ORL ACALL
CPL RET
RETI
JMP vl

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of
ECE, AIT, Tumkuru

2 1

Register 1 1

Direct 2 1

Indirect 1 1

Immediate 2 1

2 Register 1 1

Rn. Direct Rn € (Direct) Direct 2 2

Direct. A (Direct) € A Direct 2 1

Direct. Rn (Direct) €~ Rn Direct 2 2

Directl. Direct2 (Directl) € (Direct2) Direct 3 2

Direct, @Ri (Direct) € @Ri Indirect 2 2

Direct. #Data (Direct) € #Data Direct 3 2

@Ri. A @Ri € A Indirect 1 1

@Ri, Direct @Ri € Direct Indirect 2 2

@Ri. #Data @Ri € #Data Indirect 2 1

DPTR. #Datalé DPTR €< #Datalé Immediate 3 .2

MOVC A. @A+DPTR A € Code Pointed by A+DPTR Indexed 1 2
A, @ATPC A € Code Pointed by A+PC Indexed 1 2

A @RI A € Code Pointed by Ri (8-bit Address) Indirect 1 2

MOVX A. @DPTR A € External Data Pointed by DPTR Indirect 1 2
@Ri. A @Ri € A (External Data 8-bit Addr) Indirect 1 2

@DPTR. A @DPTR < A (External Data 16-bit Addr) Indirect 1 >

PUSH Direct Stack Pointer SP € (Direct) Direct 2 2
POP Direct (Direct) € Stack Pointer SP Direct 2 2
XCH Rn Exchange ACC with Rn Register 1 1
Direct Exchange ACC with Direct Byte Direct 2 1

@Ri Exchange ACC with Indirect RAM Indirect 1 1

XCHD A, @RI Exchange ACC with Lower Order Indirect RAM Indirect 1 1

A€ Rn
A, Direct A € (Direct)
A, @Ri A € @Ri
Rn, #Data Rn € data
Rn, A Rn € A
Rn, Direct Rn € (Direct)
Direct, A (Direct) € A
Direct, Rn (Direct) € Rn
Direct1, Direct2 (Direct]) € (Direct2)
Direct, @Ri (Direct) € @Ri
Direct, #Data (Direct) € #Data
@RI, A @Ri € A
@R, Direct @Ri € Direct
@R, #Data @Ri € #Data
DPTR. #Datal6 DPTR € #Datal6

Mov a, #12h

Mov a, r7

Mov a, 20h

Mov a, @r0, mov a, @r1,,,,,.... @ Only rO, r1 only
Mov r3, #30h

Mov 3, a

Mov r7, 25h

Mov 30h, r3

Mov 30h, r4

Mov 20h, 30h

Mov 20h, @r0, mov 35h, @r1
Mov 20h, #25h, mov 30h, #40h
Mov @rl1, a, mov @r0, a

Mov @r0, 20h

Mov @r1, #0ffh

Mov dptr, #1234h
Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AlT,
Tumkuru

» XCH - Exchange data between A reg. and byte source
operand

» XCHD -Exchange lower Nibble in A with Lower Nibble of Example:
source operand (Indirect Addressing).
XCH A= 23h, ro=45h
— Exchange accumulator and a byte variable
« XCH A,Rn
+ XCH A, direct XCHA, r0
P XeH AR =>A = 45h, r0 »23h
XCHD
— Exchange lower digit of accumulator with the lower digit of XCHD A. rO
the memory location specified. ’
+ XCHD A, @Ri = A=25h, r0 =43h

* The lower 4-bits of the accumulator are exchanged with the
lower 4-bits of the internal memory location identified indirectly
by the index register.

* The upper 4-bits of each are not modified.
Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

XCH A, RO === exchange instruction

Source value (right side) <=> destination (left side)
Example:

A=23h,r0=FAh

XCHA, r0

=>A =FAh, rO0 =23h

XCHA, r0

XCHA, @r0
A= 23H, r0 = #10h (immediate value) => becomes mem location = 34h
=> A =34h, 10h =23h

XCHA, 20H
A =12h, 20h = 35h
=> A =35h,20h = 12h

Exchange instruction :
Here only lower nibble (4bit) will be exchanged.

XCHD A, @r0 r0=#20h = memory location = 13h
A =25h, r0 (20h)= 12h
= A=23, 20h = 15h

A= AFh, rO= 12h
=>» A=A2h,, r0 = 1Fh

in ion
A. #Data

Arlthmetlc Instructlons

A < A+ Data

Immednate

A. Rn A € A +Rn Register 1

A. Direct A € A + (Direct) Direct 2

A. @Ri A € A+ @Ri Indirect 1
ADDC A. #Data A € A +Data+C Immediate 2 1
A. Rn A€ A+Rn+C Register 1 1
A. Direct A € A + (Direct) + C Direct 2 1
A. @Ri A€ A+@Ri+C Indirect 1 1
SUBB A #Data A €< A —Data—C Immediate 2 1
A. Rn A< A—-—Rn—-C Register 1 1
A. Direct A € A — (Direct) — C Direct 2 1
A. @Ri A€ A—-—@Ri1I-C Indirect 1 1

Multiply A with B
MUL AB (A € Lower Byte of A*B and B -- 1 4
< Higher Byte of A*B)
Divide A by B

DIV AB (A €< Quotient and B € - 1 4
Remainder) el T :
DEC A A€ A-1 Register 1 1
Rn Rn €< Rn — 1 Register 1 1
Direct (Direct) € (Direct) — 1 Direct 2 1
@RI @Ri1 €< @Ri— 1 Indirect 1 1
INC A A€ A+1 Register 1 1
Rn Rn €< Rn + 1 Register 1 1
Direct (Direct) € (Direct) + 1 Direct 2 1
@RI @R1 €< @R1 + 1 Indirect 1 1
DPTR DPTR €< DPTR + 1 Register 1 >
DA A Decimal Adjust Accumulator -- 1 1

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

Arithmetic Flags (Conditional Flags)

¢ There are 4 arithmetic flags in the 8051
Carry (C)
¢ Auxiliary Carry (AC)
¢ Qverflow (OV)
¢ Parity (P)

¢ All the above flags are stored in the Program
Status Word (PSW)

cy AC -- RSt

RSO OV -- P

PSW.7 PSW.6 PSW.5 PSW.4 PSW.3 PSW.2 PSW.1 PSW.0

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

The ADD and ADDC Instructions

¢*ADD A, source
¢ ADDC A, source

;A =A +source
;A=A +source + C

* A register must be involved in additions

¢ The C flag is set to 1 if there is a carry out of bit 7
® The AC flag is set to 1 if there is a carry out of bit 3
¢ ADD is used for ordinary addition

¢ ADDC is used to add a carry after the LSB addition in a
multi-byte process

- —

ADD and ADDC operation effectiveness:
8051 process only 8 bit at a time, so it will use ADD instruction since CY initially
zero,, if carry generated then the cy will entering to next 8 bit in order to make
complete 16bit addition where it will make use ADDC since CY is considered
here. Note that for only 8 bit addition add instruction is enough to show Sum
and cy

1. Add 1234 hand FB19 h
here carryis ‘1’=> 1 O0€here carry is usually ‘0’

12 34h
FB F9h
10E 2Dh

3+F=12hheresumis2andcarryis 1

Add two 16bit number 1234 h and FBF9h

Mov r0, #34h here carryis ‘1’=> 1 O0€here carry is usually ‘0’

Mov a, #0f9h 12 34h
Add a, r0 +FB F9h
Mov r7,a 1 0E 2Dh
answer stored in registers r5 r6 r7

Mov rl, #12h
Mov a, #0fbh
Addc a, rl

Both input and output are playing in
Mov 6, a .

registers
JC vijay
Mov r5, #00h
Vijay: incr5

end

Add two 16bit number 1234 h and FBF9h

Mov r0, #34h
Mov a, #0f9h
Add a, r0

Mov 22h, a

Mov rl, #12h
Mov a, #0fbh
Addc a, r1

Mov 21h, a

JC vijay

Mov 20h, #00h
Vijay: inc 20h
end

here carryis ‘1’=> 1 O0€here carry is usually ‘0’
12 34h
+FB F9h

1 OE 2Dh
answer stored in registers 20h 21 22h

Input in register and output are playing
in memory location

Add two 16bit number 1234 h and FBF9h

Mov r0, #21h here carryis ‘1’ 1 0€here carry is usually ‘0’

Mov rl, #31h 20h 21h

Mov a, @r0 12 34 h

Add a, @r1

Mov 22h, a 30h 31h
+FB F9h

Movro,#20 emeeeeee————

Movrl, #30h 1 OE 2D h

Mov a, @r0 answer stored in registers 20h 21h 22h

Addc a,@r1

Mov 21h, a

Both input and output are playing in

JC vijay | .

Mov 20h, #00h memory location

Vijay: inc 20h

end

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

Add two 16bit number 1234 h and FBF9h

Mov r0, #21h
Movrl, #31h
Mov a, @r0
Add a, @rl1

Mov r7h, a

Mov r0, #20h
Mov rl, #30h
Mov a, @r0
Addc a,@r1

Mov r6h, a

JC vijay

Mov r5h, #00h
Vijay: inc r5h
end

herecarryis ‘1’=> 1

1
answer stored in registers r5h

input are in memory location
output are playing in register

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

20h 21h
12 34h

30h 31h
+FB F9h

OE 2Dh
réh r7h

and

0€here carry is usually ‘0’

" wwh GQUBB A,source :A = A - source - CY

4444h 5678 h —1234h - CY =5678 h—1234 h -0 => 4444h hint: HERE CY =0
2) 1234 h 34h => 0011 0100
-5678 h 78h => 0111 1000 => 1000 0111
+ L

----------------- 2’ COMPLEMENT OPERATION USED WHEN CY =1

=>1000 1000 => 88 h ‘

therefore sub => 34h + 88h - Initial carry = BCh—-0=BCh with CY =1

12h => 0001 0010
56h =>0101 0110 => 1010 1001 ,
+1 2" COMPLEMENT OPERATION USED WHEN CY =1

=>1010 1010 =>AAh _|_

thereforsub=>12h+AA-1 > BCh-1=BBh

Final answer is BB BC h WITH CARRY FLAG =1

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

56 78 h
- 23ABh

78h— AB h
10101011 => 0101 0100
+1

0101 0101 = 55h
78h + 55h - 0=>CD hwithCY =1

56h —23h-01h=>32h

Final answer 2 32 CD h

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

Program for 2byte 16-bit Subtraction

Org 00h Next2: cpl b

Clr ¢ Add b, #01h

Mov a, 21h Mov a, b

Mov r0, a gdd a

eca

2"‘;‘:" 3b1h _ b Mov 61h, a
ubba,b//a=a-b-cy 100 con so1n

MOV 62h; d end

Mov a, 20h,

Movrl, a

Mov b, 30h

Subba,b ////a=a-b-cy

Jc next2
Mov 61h, a
Mov 60h, #00h

Note: In this program

Input values from 20h, 21h
30h, 31h, and output values
Are stored in 60h, 61h, 62h

?ﬁe DA Instruction

DA A

soc_.] [ap -1 47 h+25h =6Ch

»The action is to “decimal adjust” the register A
» Used after the addition of two BCD numbers

After hexadecimal
addition >9 = +6
add

MOV A, #47h
MOV B, #25h
ADD A, B
DA A

Example 4 :

; A=47h first BCD operand

; B=25h second BCD operand

: hex (binary) addition (A=6Ch)

; adjust for BCD addition (A=72h)

Example 4 of DA Instruction

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of EC

Hex BCD
47 0100 0111
+ 25 + 0010 0101
6C 0110 1100
+ 6 + 0110
72 0111 0010
, AlIT, Tumkuru

MUL AB 8 Bit X 8 Bit
12h X 23h

A = 12h, B = 23h
Or A = 23h, B =12h
After multiplication operation
=» Result = 02 76 h
=» Result Is stored such that
=» A = 76h
>B=02h

o The 8051 supports byte by byte
multiplication only
> The byte are assumed to be unsigned data
MUL AB ;AxB, 16-bit result in B, A

;load 25H to reg. A
;load 65H to reg. B
;25H * 65H = E99 where
;B = OEH and A = 99H

MOV A, #25H
MOV B, #65H
MUL AB

Unsigned Multiplication Summary (MUL AB)

Multiplication Operandl | Operand? | Result

Byte x byte | B B = high byte
A = low bvte

a The 8051 supports byte over byte
division only
» The byte are assumed to be unsigned data
DIV AB ;divide A by B, A/B

MOV A, #95 ;load 95 to reg. iy

MOW E,#10 ;load 10 to reg. B

NN AB ;A = 09 (quotient) and
;B = 05 (remainder)

Unsigned Division Summary (DIV AB)

Division Numerator | Denominatar | Quotient Eemainder

Byte / byte (& B b B

CY 15 always 0

FEB=00V=0
ITE =0, OV =1 mdicates error

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

1234 h X ABCD h = 0C 37 4F A4 h 16 Bit X 16 Bit

1234 hXABCD h

Carry=>0129A4 > CDhX34h
OE6A|| > CDhX12h
22BC| =>ABhX34h

ocoeﬂ => ABhX12h

34hx CDh=29 A4 h = A= A4 h, B=29h therefore here 29 h move as carry
and A4 h is one of the direct answer

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

Org 00h Addca,r6 ////cy=0+93 h+BC=014Fh

MOV r5, #0CDh Mov 22h, a

mov b, r5

Mov a, #34h Mova,b /////a=22h

MulAB ///CDhX34h?B=29h, A=A4h Addc a, r7 /// OE h + 22h + 01h = 31h, and here cy = 1 is added
Movr3,a///r3=31h,cy=0

Mov 23h,A

Mov r6,B ////r6 =29h Mov r5, #12h
Mov a, #0ABh

Mov a,#12h Mov B, r5

Mov b,r5 Mul AB ///B=0Ch, A=06h

Mul AB ////12h XCD?B=0Eh, A=6A h
Addca,r3 ///06h+31h +(cy=0)=37h

clr c Mov 21h, a
Addca,r6 ////a=29h+6Ah=93 hwithcarry=0 Mov a, b
Mov r6,a //// r6 =93 h Mov 20h, a
Mov r7,B ///// r7 = 0OE h end

Mov r5, #OABh

mov b, r5

Mov a, #34h

Mul AB /////ABhX34h?B=22h,A=BC

The INC and DEC Instructions

¢ To increment (INC) or decrement (DEC) the internal
memory location specified by the operand

® No change with all the arithmetic flags in this
operation

¢®eg. INC 7Fh ; content in 7Fh increased by 1
DEC Ri ; contentin Ri decreased by 1

INC A

INC direct

INC @Ri1 where i=0,0r1
INC Rn where n=o0,,7

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

ction

AL #Dat

Logical Instru

Cription

A < A AND Data

ct

T

ions

s 3
-) CSE

Immediate

singe Mode

A. Rn A €< A AND Rn Register 1 1

A Direct A €< A AND (Direct) Direct 2 1

A. @R1 A €< A AND @Ri Indirect 1 1

Direct. A (Direct) € (Direct) AND A Direct 2 1

Direct. #Data (Direct) € (Direct) AND #Data Direct 3 5

ORL A . #Data A €< A OR Data Immediate 2 1
A.Rn A €< A OR Rn Register 1 1

A. Direct A €< A OR (Direct) Direct 2 1

A. @R1 A €< A OR @Ri Indirect 1 1

Direct. A (Direct) €< (Direct) OR A Direct 2 1

Direct. #Data (Direct) €< (Direct) OR #Data Direct 3 2

XRIL A. #Data A €< A XRI Data Immediate 2 1
A.Rn A €< A XRL Rn Register 1 1

A Direct A €< A XRI (Direct) Direct = 1

A. @Ri1 A € A XRL @Ri Indirect 1 1

Direct. A (Direct) € (Direct) XRIL A Direct 2 1

Direct. #Data (Direct) €< (Direct) XRIL #Data Direct 3 2

CLR A A< O0H — 1 1
CPL A A< A - 1 1
E = L3

RIL A Rotate ACC Left - 1 1
RILC A Rotate ACC Left through Carry - 1 1
RR A Rotate ACC Right - 1 1
RRC A Rotate ACC Right through Carry -- 1 1
SWAP A Swap Nibbles within ACC - 1 1

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

Instruction

A #Data A
A Rn A €< A AND Rn
A . Direct A €< A AND (Direct)
A @R1 A € A AND (@Ri1
Direct. A (Direct) €< (Direct) AND A
Direct. #FData (Direct) €< (Direct) AND #FData
ORI A FData A €< A OR Data
A. Rn A < A OR Rn
A . Direct A €< A OR (Direct)
A. @R1 A € A OR @Ri1
Direct. A (Direct) €< (Direct) OR A
Direct. #FData (Direct) €< (Direct) OR #FData
XRI A #FData A €< A XRI Data
A Rn A < A XRI. Rn
A Direct A €< A XRI (Direct)
A . @R1 A €< A XRI @Ri1
Direct. A (Direct) € (Direct) XRI. A
Direct. #Data (Direct) €< (Direct) XRI. FData
CLR A A< O0OH
CPILC A A < A
RI. A Rotate ACC L eft
RI.C A Rotate ACC Left thhough Carry
RR A Rotate ACC Right
RRC A Rotate ACC Right thhrough Carry
SWAP A Swap Nibbles within ACC

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

ANLA, #34h
ANLA, r3
ANLA, 20H
ANLA, @R1
ANL 30H, A
ANL 20H, #35H

ORLA, #34h
ORLA, r3

ORL A, 20H
ORLA, @R1
ORL 30H, A
ORL 20H, #35H

XRLA, #34h
XRLA, r3

XRL A, 20H
XRLA, @RO
XRL 30H, A
XRL 20H, #35H

CLRA
CPLA

RLA
RLCA
RLCA
RRA
RRCA

And operation: 1111 0010 = F2h OR operation: 1111 0010 =F2h
0010 1111 =>2Fh 0010 1111 =>»2Fh

0010 0010 =>22h 1111 1111 =>FFh

XOR operation: 1111 0010 = F2h CLR Clear operation: A=1111 0010 = F2h
0010 1111 = 2Fh A = 0000 0000 = 00H

1101 1101 =>CCh

CPL Complement operation: A=1111 0010 = F2h
A =0000 1101 =0Ch

Rotate instruction

Rotate right ====2 RR carry not considered
Rotate left === RL carry not considered

Rotate right with carry ====» RRC
Rotate left with carry ===» RLC

The Rotate Instructions

L7654321o
FITEFFFH i 2o

RL A

< 7 % 8 &3S 2 % 0 Before: 10011100
:]._ + + + + + + +< After: 00111000

Carry Flag RLC A

76 § 4 3 2 1t 9 Before: 10011100
FFFFEFF A otoeniis

RR A

7 8 8, & S £ 3 O C Before: 10011100
[A e
RRC A Carry Flag
Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

ER &

r

o In rotate right

> T he 8 bits of the accumulator are rotated
right one bit, and

> Bit DO exits from the LSB and enters into

rotate right A

MSB, D/
MSB—LSB
MOW A, H#H3IcH ;A = 0011 0O0110
ER Ly ;B = 0001 1011
RR Ly ;B = 1000 11031
ERR s ;A = 1100 0110
ER Ly ;B = 0110 00114
RRC A ;rotate right through carry
o In RRC A

> Bits are rotated from left to right

> They exit the LSB to the carry flag, and
the carry flag enters the MSB

RL A

;rotate left A

o In rotate left

= The 8 bits of the accumulator are rotated
left one bit, and

» Bit D7 exits fromm the MSB and enters into
LSB, DO

L

MSB-~— LSB

MOW 2, #72H ;A = 0111 0010
RL. M~ ;A = 1110 0100
RL A ;A = 1100 1001
RL.C A ;rotate left through carrvy
o In RLC A
> Bits are shifted from right to left
> They exit the MSB and enter the carry flag,

and the carry flag enters the LSB

L—CY’F—' MSB~—LSB *J

MSB—LSB — CY —
CLE C ;make CY = 0
MOW A, #Z26H ;& = 0010 0110
RRC A ;& = 0001 0011 CY¥ = 0
RRC A ;4 = 0000 1001 C¥ = 1
RRC A ;4 = 1000 0100 C¥ = 1

MORF
MO
MO
AGATN: RLC
JNC
ITHNC
NEXT : DJd A

Write a program that finds the number of 1s in a given byte.
R1, #0
R7T,H#8 srcount=08
A, #97H
rin
NEXT rcheck for CY
R1 ;if C¥=1 add to count
RY, AGATN

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

The SWAP Instruction

¢ Swapping the lower-nibble (lower 4 bits) and the
higher-nibble (upper 4 bits) of register A.

7 6 5 4 3 2 1 0

High Nibble Low Nibble

e} - l

SWAP A

Register A = 5Eh (original value) after SWAP Register A = Esh

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

C € 0 (C = Carry Bit)

Bit Bit € 0 (Bit = Direct Bit) 1
SET (& c< 1 1 1
Bit Bit < 1 2 1
CPL G cC&€ C 1 1
Bit Bit € Bit 2 1
ANL C. /Bt C < C. Bit (AND) 2 1
C. Bit C < C . Bit (AND) 2 1
ORL C. /Bit C €< C + Bit (OR) 2
C. Bit C € C + Bit (OR) 2
MOV C. Bit C < Bit 2 1
Bit. C Bit < C 2 2
JC rel Jump is Carry (C) 1s Set 2 2
JINC rel Jump i1s Carry (C) 1s Not Set 2 2
JB Bit, rel Jump is Direct Bit is Set 3 2
JNB Bit. rel Jump i1s Direct Bit is Not Set 3 2
IBC Bit rel Jump i1s Direct Bit is Set and 3 >

Clear Bit

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

Boolean Operations

CLR
— Clear a bit or the CY flag.
s ‘GLER:P1A
« CLRC
SETB
— Set a bit or the CY flag.
- SETB A.2
- SETBC
CPL
— Complement a bit or the CY flag.
* CPL 40H ; Complement bit 40 of the bit
addressable memory
ORL / ANL
— OR / AND a bit with the CY flag.
= ORL C, 20H : OR bit 20 of bit addressable
memory with the CY flag
= ANL C, /34H ; AND complement of bit 34 of bit
addressable memory with the CY
flag.
MOV
— Data transfer between a bit and the CY flag.
- MOV C, 3FH ; Copy the CY flag to bit 3F of the

bit addressable memory.
- MOV P1.2,C ; Copy the CY flag to bit 2 of P1.

e« JC/JNC
— Jump to a relative address if CY is set / cleared.

* JB/JNB
— Jump to a relative address if a bit is set / cleared.
*JB ACC.2, <label>

 JBC
— Jump to a relative address if a bit is set and clear
the bit.

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

Assume that bit P2.2 1s used to control an outdoor light and bit P2.5
a light mside a building. Show how to turn on the outside light and

twm off the mside one.

Solution:

SETE C :CY = 1
ORL C,pP2.2 :CY = P2.2 ORed w/ CY
MOV Pz2.2,C ;turn it on if not on
CLR C :CY = 0

ANL C,P2.5 :CY = P2.5 ANDed w/ CY

MOV P2.5,C sturn it off if not off

Write a program that finds the number of 1s 1n a given byte.

Solution:

AGATIN:

NEXT :

MOV R1,#0 ;R1 Keeps number of 1s
MOV R7,#8 ;counter, rotate 8 times
MOV A,#97H :find number of 1s in 97H
RLC A ;rotate it thru CY

JNC NEXT ;check CY

INC R1 ;1f C¥=1, inc count
DJNZ R7,AGATN ;go thru 8 times

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

Assignment: Find the number
of 1’s and 0’s and store the
results in r4 and r5

Dr. Vijaya Kumar H R, Associate.
Prof, Dept. of ECE, AIT, Tumkuru

Branch instruction

Absolute Subroutine Call
appR PC + 2 > (SP): ADDR11 > PC <
N> Long Subroutine Call
Dl PC + 3 2 (SP); ADDR16 2 PC =
Return from Subroutine
R B (SP) > PC
RETI -- Return from Interrupt
Absolute Jump
I ARDE ADDR11 = PC
TMP \D Long Jump
L 2L ADDRI16 2 PC =
Short Jump
SIME ek PC + 2 +rel > PC 2
JIMP @A + DPTR A + DPTR - PC 2
JZ rel If A=0. Jump to PC + rel 2
INZ rel If A # 0, Jump to PC + rel
INE ' Compare (Direct) with A. Jump
2 GepiBisne e to PC + rel if not equal =
Compare #Data with A. Jump to
A, #lata, 1ol PC + rel if not equal =
g Compare #Data with Rn. Jump
oo Das el to PC + rel if not equal =
: Compare #Data with @Ri. Jump
@R, #Data, 1e] to PC + rel if not equal =
DINZ R rol Decrement Rn Jump to PC + rel >
if not zero
Direct rol Decrement (Quect). Jl?mp to PC 5
+ rel if not zero
NOP No Operation 1

ACALL — 11BIT ADDRESS == 2k Bytes
LCALL — 16 BIT ADDRESS == unlimited

Syntax:

ACALL delay

LCALL delay

Delay : It’s just a name of subroutine or loop
name or subprogram name

Operation i Operation
LCALL FC = FC + 2
SP = SP + 1
SO0} = BC
(58} = BC[7-0] ,iP]'= oD f‘i
SP = SP + 1 - -
SO} = BC
(5B} = BC[15-E] E{,C]' ~ oe1d
PC = addrlé 10-0 = =10-0
Example Example
LCALL SUE1 ACATT LABEL

LCALL =16 BIT address ==0to 15, ACALL = 11BIT address =0 to 10,

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

PC to SP using CALL
And SP to PC using RET

1=»1200h : mov a, r0
2=»1201h: mov b, #12h

3=»1202h:acall delay SP = 8bit =12 01 h
3=»1203h:add a, b SP+1=>01h
4=»end SP+1=>12h
Subprogram: ACALL = 11BIT address =0to 10
1=»delay: mov a, b LCALL =16 BIT address ==0to 15

Mov 20h, a

ret === entering to 2 step to tell next address is

1203 fetch

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

* The 8051 provides 2 forms for the return
Instruction:

— Return from subroutine — RET

* Pop the return address from the stack and continue execution
there.

— Return from ISR — RETI

* Pop the return address from the stack.

* Restore the interrupt logic to accept additional interrupts at the
same priority level as the one just processed.

* Continue execution at the address retrieved from the stack.
 RETI must be used for interrupt service routine.

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

SP=>PC=>»1201h

Operation | Operation
RET RETI
12 | ECisg = (5E) 12 | PCi52 = (3E)
5P = 5P - 1 Sp = 5P - 1
01 | o= (58] 01 | ECro = (SF)
SP =3P -1 SP = SP - 1
Example | = I
RFT xample

RETI

PC==>1201h

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

SP=0/H 08H O9H

SP+1
SP+1

=>01H 12H
O9H 12H
08H | O1H
O/H

CALL

PC=12H 0O1H
O9H | 12H
O8H | O1H
O/H

RET

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

SP-1
SP-1

* The 8051 supports 5 different conditional jump
instructions.

— ALL conditional jump instructions use an 8-bit signed Eyx* Add a. rO // A =00H
offset. !
JZ nextl
— Jump on Zero—-1JZ / INZ -
* JumpiftheA==0/A!=0 jNZ V'Jay

— The check is done at the time of the instruction execution.

— Jump on Carry —JC/ JNC — Jump on Bit—JB / JNB
* Jump if the Cflag is set / cleared. * Jump if the specified bit is set / cleared.
JZ next and ..'NZ next Any addressable bit can be specified.

JCnextand JNC next _ Jump if the Bit is set then Clear the bit — JBC

 Jump if the specified bit is set.
* Then clear the bit.

JB next and JNB nextl

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

 Compare and Jump if Not Equal — CJNE
— Compare the magnitude of the two operands and
jump if they are not equal.

* The values are considered to be unsigned.
* The Carry flag is set / cleared appropriately.

 CJNE A, direct, rel * Decrement and Jump if Not Zero — DJNZ
* CINE A, #data, rel — Decrement the first operand by 1 and jump to the
* CJNE Rn, #data, rel location identified by the second operand if the
e CJNE @Ri, #data, rel resulting value is not zero.
* DINZ Rn, rel
* DINZ direct, rel

* No Operation
— NOP

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

CINE A, #20H, Rel
Mov b, a

Rel: mov r0, a
Ex: A =20H

A < 20H /// EQUAL
Next instruction executed

Ex: A = 15h, A<=>20h ////
UNEQUAL
It go to Rel loop to execute

CINE A,

20H, Rel

CINE A, 30H, Vijay

CINE r2,

O5h, raki

CINE @r1, #OFh, 4" ece

CINE
CINE
CINE
CINE

A, direct, re
A, #data, re
Rn, #data, rel

@RI, #data, rel

The 8051 provides four different types of unconditional
jump(jump to the specified address without any condition)
instructions:

— Short Jump - SIMP Here: simp Here

* Uses an 8-bit signed offset relative to the 15 byte of the next instruction.

* In this jump the target address must be within -128 to +127 bytes(00-FF)
of the program counter of the instruction.

* |tis two byte instruction.
— Long Jump - LIMP
* Uses a 16-bit address(0000-FFFF). Here: ljmp Here
* 3 byte instruction capable of referencing any location in the entire 64K of
program memory.

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

— Absolute Jump — AJIMP(Jump can be within single page)

e Uses an 11-bit address. Here: ajmp Here

* 2 byte instruction

— The upper 3-bits of the address combine with the 5-bit opcode to form
the 15t byte and the lower 8-bits of the address form the 2" byte.

* The 11-bit address is substituted for the lower 11-bits of the PC to
calculate the 16-bit address of the target.

— The location referenced must be within the 2K Byte memory page
containing the AJMP instruction.

The JMP instruction transfers execution to the address generated by adding the 8-bit value in the
accumulator to the 16-bit value in the DPTR register.

— Indirect Jump — JMP(This instruction is not widely used)
e IMP @A+ DPTR Operation | g

A=08 h, DPTR=1100 h FC = A + DFTR
JMP @A +DPTR = e

xample
Jump to address == PC = a + dptr = 1108h JMEP @EA+DETR

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

Stack in the 8051

The stack 1s a section of RAM used by the CPU to
store information temporarily.

The stack 1s in the 8051 RAM location O8H to 1FH.
How the stack 1s accessed by the CPU ?
The answer 1s SP (Stack Pointers) .

— SP 1s an 8-bit register.
— SP always points to the last used location.

— SP stores the address of top data.

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

STACKIN 8051

SP =>Stack pointer => 8bit => used to store address or
mem or information.

It will take Location of last step.

SP => Starting address = 07h => 08h to 1Fh

Push => store mem or address or information and
Location to SP are

Pop=> Retrieve mem. Location from SP

Push and Pop are playing with only Register bank

=> RBO, RB1, RB2, RB3

Default=> RBO register bank is used.

Mov r2, #0f1h

Mov r4, #lah ™2°
Mov r5, #15h

Mov r7, #22h

Push 2 = r2
Push 4 = r4
Push 5 = r5
Push 7 =r7

SP+1 =0BH

22H

SP+1=
OAH

15H

SP+1 =
09H

SP +1
=08H

SP =07H

Pop7 = r7
Pop5 = r5
Pop 4 = r4
Pop 2 =12

If | am using different register bank then suppose RB2
53%535%)0’.2? =1, RS0 = PSW.3 =0, SETB, CLR instruction is to be used.

CLR PSW.3 Tolp:()ng SP+1 =0BH | 22H
Mov r2, #0flh ——
Mov r4, #lah 0AH

Mov r5, #15h ot 1A
Mov r7, #22h 09H

Push 2 =>» r2 a1 lortn
Push4 = r4 =08H

Push5 = r5 SP=O07H |
Push 7 =>r7

Pop7 = r7
Pop5 = r5
Pop4 = r4
Pop 2 =12

If | am using different register bank then suppose RB3
53%535%)0’.2? =1, RSO =PSW.3 =1, SETB, CLR instruction is to be used.

SETB PSW.3
Mov r2, #0f1h
Mov r4, ##1ah
Mov r5, #15h
Mov r7, #22h
Push2 = r2
Push4 = r4
Push5 = r5
Push 7 =>r7

Top of SP
—

SP+1 =0BH

22H

SP+1=
OAH

15H

SP+1 =
09H

1AH

SP +1
=08H

OF1H

SP =07H

Pop7 = r7
Pop5 = r5
Pop4 = r4
Pop 2 =12

If | am using different register bank then suppose RB1
RS1 =PSW.4 =0, RSO = PSW.3 =1, SETB, CLR instruction is to be used.
COR PO 4 nstrction | .

SETB PSW.3
Mov r2, #0f1h
Mov r4, ##1ah
Mov r5, #15h
Mov r7, #22h
Push2 = r2
Push4 = r4
Push5 = r5
Push 7 =>r7

Top of SP
—

SP+1 =0BH

22H

SP+1=
OAH

15H

SP+1 =
09H

1AH

SP +1
=08H

OF1H

SP =07H

Pop7 => r7
Pop5 = r5
Pop4 = r4
Pop 2 =12

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

Microseconds =2 X 255 Xt => ... usec DELAY CALCULATION

Milliseconds = 2 X 255 X t X unknown number = ... msec
Seconds = 255 X 255 X t X unknown number = ... sec
22MHz, 200msec

T=1/[22MHz / 12] = 0.5454 psec

2 X 255 x t x unknown value = msec

0.274 msec x 720 == 200.2msec

22MHz, 10sec
T=1/[22MHz / 12] = 0.5454 psec
255 x 255 x 0.5454usec x 282 = 9.993 sec = 10sec

22MHz, 100msec

T=1/[22MHz / 12] = 0.5454 psec

2 x 255 x t x unknown value = msec
0.274 msec x 360 == 100msec

22MHz, 20sec

T = 1/[22MHZ / 12] = 0'5454 |J.5ec Mr. VijayaKumar H R, Asst. Professor, Dept. of ECE, AlT,
255 x 255 x t x unknown value = msec Tumakuru

0.0355 sec x 564 == 19.99 = 20sec

by loSec $£- tbmtlz

Aeal) ewmj i .
Caelmj $ oy ‘6&,#5[04 e 1= [if_‘o C\-"}TJLSQ
Nerea 5 mOV’!r «ﬁTl-SS' o N
- Nere2 ' mov vl 255 :ﬁ&ssxzssxoyasmo .
hWQS Oljn?, 3 hme3 | = 0.04q X204 :
&J“'l- V1 lﬂ?'a-e,a = q.(]L{ n lb&:& '
dj"\i V) sherea ' :
End)
% pgec L £ = Qamitle
CLLl(‘u.j meN ¥y);H [iat® 1= [—FTE—— = Ol.ﬂ-——.‘
trhese L. 5, pnov T 5 AT 25T c . sqsxrﬁé

)5S XSS X0
— 003543 X MO ”

\ Q6 M. Bsec

hese 3 + ddor V3 - heses
djﬁ-’l, g > Newa

‘dg'h'l Tq s hewed

erd o, T T

Mr. VijayaKumar H R, Asst. Professor, Dept. of ECE, AT,
Tumakuru

' VU)I T s (Umie(',

Fay
Pay C:" 051 iatte . Cwnq Acnir dy
P jo 0 Mosqamya ol fasy: Moc:‘d%,# 'g

to 9"1. I'OMIC(-,-“";.C, ooty PAB s o SEREE
"oé-m& " - "-OSQQMQJ bhexae?: PINZ 7, ,hewz
{‘-I.OSQ.!.,uo‘ -t | DING 5. hew
| R geT
e - 4 Lec:-
acinue dalay -

AXIETX 1,09 x105° = 550. FHsec
§50. g x0” ‘XIQ = LUYym 2 = [0mge tf:[wi: 'x)t:,v T?O't;j;l;
ALt e

h-
18 955 X265 x), omo hees: MOV Fa H255
= 40&4:{,xlo cec. howe 33 o2 e, hees
DINIZ Ty, heae 3
¥oa"’x‘0.‘x (4 30-1332(, DIMI TFe, hew !
— | PET
g [

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

A r 2UQ 23,7y, (U1ne

. . R o ¥ / : { ' . | g
‘ - o d’i‘“—l MoV Te, HIT
COn"(:(’n-O LM[E/ | : 234 hets)t MOV 7, HI55-
hwe? . Ps N = T AMLQ—

DING 2. hewt

MOV A;FFS‘S@\- o son & \
. | L£eT

‘BQ'C'L‘: MOV P“g ' SRS 4 <ec:-
SHL Y TR -l YR

CALIOJ.’ : 0oV To., HILQ.

(PL A | -
k ' hetes + napy 7, HacTs
STmP Bac 3 : ' hewe 3 MOV T2 H2SS
' howe 3: DIN2 e, heas ‘A
DINIZ T, hete 3 -
DIMI Ta, hew)
4

LET

e

Module 2 Theory part end

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

ASSEMBLER DIRECTIVES OF 8051

a ORG (origin)
» The ORG directive is used to indicate the
beginning of the address

> The number that comes after ORG can be
either in hex and decimal

= If the number is not followed by H, it is decimal
and the assembler will convert it to hex

a END

> This indicates to the assembler the end of
the source (asm) file

» The END directive is the last line of an
8051 program

= Mean that in the code anything after the END
directive is ignored by the assembler

ORG OOH

ORG 30H =» STARTS AT 30H Address line

ORG 1000H = 16 bit address line

ORG 30 = Here no ‘H’ = 30 is decimal numbered address

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

* EQU
~ Used to create symbols that can be used to represent
registers, numbers, and addresses

VIOTOR EQU 12H

— This is used to define a constant without

occupying a memory location MOV P1, VIOTOR /// P1=12H
COUNT EQU 25

MOV R3, #COUNT /// R3 = 25H

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

» 8051 microcontroller has only one data type - WSS S00H

, DATA1: DB 28 :DECIMAL (1C in Hex)
8 bits DATA2: DB 00110101B ;BINARY (35 in Hex)
— The size of each register is also 8 bits DATA3: DB 39H ;HEX
— ltis the job of the programmer to break down data ©RS S10H
larger than 8 bits (00 to FFH, or 0 to 255 in DATAS 25917 ASCI NUMBERS
decimal) s St

y , DATAG6: DB “My name is Joe” ;ASCIl CHARACTERS
— The data types can be positive or negative

| | DB =>» Represent decimal, binary, hexadecimal
* The DB directive is the most widely used data numbers.

directive in the assembler Also ASCII numbers or characters
— It is used to define the 8-bit data “....” == each character will have 8 bit
— When DB is used to define data, the numbers can Example: My == 8 + 8 =16 bit
be in decimal, binary, hex, ASCII formats “25” == 2 = 8bit, 5 = 8bit
Space = 8bit
Syntax: Datax: DB ---
x=1,2,...

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

1. Write a assemble language program to transfer a block of bytes of data from one location to

another location both internally
Data memory Contents Data memory Contents
address address

Org 00h
Mov r3, #04h ;
, : 1h D:0x050
Mov r0, #40r e
Mov rl, #50h

Mov @r1, a D:0x043
Incr0
Incrl
e
] dd
Djnz r3, next =

Here:sjmp here
end mm

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

1. Write a assemble language program to transfer a bytes of data from one location to another location
both externally

Org 00h Data memory Contents Data memory Contents
Mov r3, #04h address address e

x:0x1500
Mov 10, 00n /idpl =source |t S O
Mov r1, #00h ///dpl = destination EEZECZNNENNCTTRN | oasol o o0h
Vow dol 101 il = o2 | b) e | W
Mov dpl, rO /// dpl = source == 00h

Movx a, @dptr /// 1200h | 0d203 | xowm | o
Inc r0
Mov dph, #15h e | Comems

Mov dpl, #r1 ////// mov dptr = 1501h
Movx @dptr, a //// 1500h Ox1501
inc r1 o e

Djnz r3, back I
Here:symp here x:0x1503
end _“

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

3. Write a assemble language program to

exchange a block of bytes of data between - - - -

two memory locations address address

ovs, v oow | o | wees | am

Xcha, @rl

Mov @r0, a Data memory Contents Data memory Contents
address address

Inc rl _

end -“

Djnz r3, next

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

1. Eight bit numbers X, NUM1 and NUM2 are stored in internal data RAM locations 20h, 21h and 22H respectively. Write an assembly language program to
compute the following:

IF X=0; then NUM1 (AND) NUM2,

IF X=1; then NUM1 (OR) NUM2,

IF X=2; then NUM1 (XOR) NUM2,

ELSE RES =00, RES is 23H RAM location.

2. Write a assemble language program to toggle all the bits of Port 2 for every 200ms. Assume crystal is 11.0592MHz. Show all the calculations needed.

3. Write an assembly language program to find the average of 10 students marks stored in external RAM memory address 8000H. Load the average value in
internal RAM memory 30H.

4. Write an assembly language program to find the factorial of a number. Use Subroutine programming.
5. Write an ALP to convert a packed BCD number into two ASCII numbers. Store the result in R5 and R6 respectively.

6. Write an ALP to convert a Binary number to packed BCD number (hexadecimal to decimal). The binary number is stored at 40h location. Store the converted
packed BCD number at 50h and 51h internal RAM location.

7. Write an assembly language program to sort an array of n=>5 bytes of data in ascending order stored from location 30h. (Use bubble sort algorithm)
8. Write an assembly language program to count the number of 1°s and 0’s in an 8-bit data received from port P1. Store the count of 1°s and 0’s in 30h and 31h.

9. Assume a push button switch is connected to port pin P1.2, Write an assembly language program to monitor the switch and turn ON the LED’s connected to port
P2 as long as the switch is pushed.

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

+ ve and — ve number program
45h, a3h,11h, 07h, f1h

Org 00h

Mov dptr, #2000h

Mov r3, #05h

Back: Movx a, @dptr /// 45h

ric a

Jnc Positive

inc 30h

Inc dpl

djnz r3, back

here:sjmp here

Positive: inc 20h

Inc dpl

djnz r3, back

here:sjmp here

end

Concept: +ve or —-ve no.
Indicated by 8" bit of any
hexadecimal number

Ex: 45h = 0100 0101

8t bit =0 = + ve =»30h

A5h = 1010 0101

8" bit=1=-ve =»20h

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

Find the largest and smallest number in an array of numbers which are stored in memory
locations.

Fl1h, 12h, 33h, F8h,
=> F8h = largest

= 12h = smallest org O smaiest org Oh | ARGEST
mov r(, #40h mov r0, #40h
mov r2, #4h mov r2, #4h
mov 50h, 40h mov 50h, 40h
back:mov a, @r0 back:mov a, @10
incr0 inc r0
subb a, @r0 subb a, @r0
jc down jnc down
mov 50h, @r0 mov 50h, @r0
down: djnz r2, back down: djnz r2, back
end end

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

Write an ALP for Decimal UP-Counter

ORG 00H
MOV R3, #64H

BACK1: MOV A, #00H
MOV P1, #00H

BACK2: MOV P1,A
ACALL VUAY
ADDA, #01H

DAA

DJNZ R3, BACK2
SJMP BACK1

VIJAY:MOV RO, #255
HERE1:MOV R1, #255
HERE2:MOV R2, #255
HERE3:DJNZ R2, HERE3
DJNZ R1, HERE2

DJNZ RO, HERE1

RET

END

EXPECTED RESULTS:
NOTE THAT 64H =99 in decimal
PORT1: P1: 00 TO 99 displayed

Write an ALP for Decimal DOWN-Counter.

ORG 00H
MOV R3, #64H

BACK1: MOV A, #99H
MOV P1, #00H

BACK2: MOV P1, A
ACALL VUJAY
ADDA, #99H

DAA

DJNZ R3, BACK2
SJIMP BACK1

VIJAY:MOV RO, #255
HERE1:MOV R1, #255
HERE2:MOV R2, #255
HERE3:DJNZ R2, HERE3
DINZ R1, HERE2

DIJNZ RO, HERE1

RET

END

EXPECTED RESULTS:
NOTE THAT 64H =99 in decimal
PORT1: P1: 99 TO 00 displayed

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

Org 00h = -
Mov r3, #0ah The Fibonacci

Mov rl, #20h
Mov a, #00h Sequence

Mov @rl,a /// 0
add a,#01h

incrl
Mov @r1,a ///1

0.1, 1, 2, 3,58, 13 21, 34, 35; -

Back: decrl //// to 20h
adda,@rl1 ////0+1, 20h+21h=01
da a

incrl

incrl

Mov @r1, a

djnz r3, back

end

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

1. Eight bit numbers X, NUM1 and NUMZ2 are stored in internal data RAM locations 20h, 21h and 22H respectively. Write an

assembly language program to compute the following: org 00h

IF X=0; then NUM1 (AND) NUMZ2, Mov r0, 21h

IF X=1; then NUM1 (OR) NUM2, Mov rl, 22h

IF X=2; then NUM1 (XOR) NUM2, mov a, 20h

ELSE RES =00, RES is 23H RAM location. cjne a,#00h,vijay1l
Mov a, 21h
Anl a, 22h

20H = X, 21IH=>NUM1, 22H=>NUM2, 23H=>RES Here: sjmp Here

20h = 00h, 21h and 22 h,, Results stored in Accumulator = A mov a,20h

20h = 01h, 21h or 22h,, Results stored in Accumulator = A vijay1: cjne a,#01h,vijay2
20h = 02h, 21h XOR 22h, Results stored in Accumulator =» Mov a, 21h

20h = other than 00h, 01h, 02h, 23 h = 00h. Orl a, 22h

Herel:sjmp Herel

mov a,20h

vijay2:cjne a,#02h,vijay3
Mov a, 21h

Xrl a, 22h

Here2:sjmp Here2
Vijay3: mov 23h, #0ffh
Here3:sjmp here3

end

Write an assembly language program to find the average of 10 students Data memory Contents

marks stored in external RAM memory address 8000H. Load the average i [reca e

value in internal RAM memory 30H. x:0x8000
org 00h

mov r2, #00h

o | W
loop: movx a,@dptr

mov r2,a /// Finally r2 contains total marks “
inc dpl

, x:0x8006 07h

djnz rl, loop -_
oVt iah /1=t e
movarz Mlifazr | xbeos | ok
div ab

mouioha i quotient vl L

mov 31,b //// remainder value
end

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

Write an assembly language program to find the factorial of a number. Use

Subroutine programming. org 00h
Input is 04h =>» mov r0,#04h
Output is =» 04h X 03h X 02h X 01h mov a,r0
acall fact
fact:dec rO
We can show the results in terms of decimal cjne r0,#01,vijay
Value by using da a instruction sjmp stop
Note this program is only for smaller values vijay:mov b,r0
mul ab
daa
acall fact

stop:sjmp stop
end

Write an assembly language program to count

the number of 1°s and 0’s in an 8-bit data Org 00h Org 00h

received from port P1. Store the count of 1’sand €' € Clrc

0°s in 30h and 31h. Mov a, 90h /// 90h = Port1 Mov a, 90h /// 90h = Port 1
Mov r3, #08h Mov r3, #08h

P1 => 45h ==> O 100 O 10 1 Back:rica Back:rica

s asn 3 . jc loop jnc loop

No. of one ,s 1 ’s) = 03h => stored in Inc 31h Inc 30h

No. of zero’s (0’s) = 05h => stored In Djnz r3, back Djnz r3, back
Here:sjmp here Here:sjmp here
loop:inc 30h loop:inc 31h
Djnz r3, back Djnz r3, back
Here:sjmp Here Here:sjmp Here

end end

Ascending and Descending Order

Concept: 05h, F1h, 23h, FFh, 01h
Ascending: 01h, 05h,23h, F1h, FFh
RO=>R1=>R2

05h, 23h, F1h, 01h,FFh = 15t step

Org 00h

Mov r5, #05h
Backexternal: mov r4, #05h
Mov rO, #20h

Mov rl, #21h
Backinternal: mova, @r0O
Mov 50h, a

Mov b, @rl

Subb a, b

Jnc VIJAY /// note that Jnc for Ascending and Jc for
Descending

Sjmp last

mov a, 50h

Xch a, @rl

Xch a, @r0

VIJAY: incrO

Incrl

djnz r4, backinternal

djnz r5, backexternal

end

05h, 23h, 01h, F1h, FFh = 2" step
05h, 01h, 23h, F1h, FFh = 3" step

01h, 05h, 23h, F1h, FFh = 4" step

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

Square and Cube of Number
Square of a given number

1500h == 1A h == input Input value :1Ah X 1Ah X 1Ah

O 51 == output lAhXMh 1Ah X 1Ah
02 Ah =TT
or8 00n 50h 51h 02 A4 h
mov dptr, #1500h
02 A4 h X 1Ah

movx a, @dptr
mov b, a or mov b ,#1Ah

10 A8 h
mul ab //// a=A4h, b=02h 00 34
mov50h,b
mov 51h, a 0044 A8h
end

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

Cube of a given number

1500h == 1A h == Input
50h, 51h == Output

org 00h

Mov dptr, #1500h

Movx a, @dptr

Mov a, b

mul ab /// a=A4h, b=02h
movrd,a ////r4 = Adh
movr5,b ////r5=02h
mov a, #lah

mov b, r4

mul ab ////// a= A8h, b = 10h
movrl,a ///rl=AS8h
Movr2,b ///r2 =10h

Input value :1Ah X 1Ah X 1Ah

Mov a, #1Ah
Mov b, #r5 1Ah X 1Ah
Mulab//a=34h,b=00h
Mov 32h, rl 02 Adh
Add a, r2 /// a = 44h
Mov 31h, a 02 A4 h X 1Ah
Mov a, #00h 10A8h /// AdhX 1Ah
Movrl, b 00 34 /// 02 h X 1Ah
Addca,rl

00 44 A8 h = 30h, 31h, 32h
Addc a, b
Mov 31h, a
Mov 30h, b
end

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

Find Odd or Even of a given number, put the output FFh in Port2 for odd and 00h in port 2

for even

v

0 = 0000h => even
1=0001h => odd
2 =0010h => even
3 =0011h => odd
4 = 0100h => even
5=0101h => odd
6 =0110h => even
7 =0111h => odd
8 =1000h => even
9 =1001h => odd
A =1010h => even
B=1011h=> odd
C=1100h => even
D=1101h => odd
E=1110h => even
F=1111h => odd

Example: 23h => 0010 0011 = odd
org 00h 4Ah => 0100 1010 = even
Mov P2, #00h
clrc
Mov dptr, #1500h
Movx a, @dptr /// a=23h =input
rrc a ///if cy = 1 jump to next loop otherwise next instruction is executed
jc next

mov P2, #00h
herel:sjmp herel
next: mov P2, #OFFh
here: simp here
end

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

We need to observe first binary bit of any given number to indicate odd or even, 0 = even, 1= odd

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

fEt_acimal packed BCD unpacked BCD Hex

12 0001 0010 0000 0001 0000 0010 OCH
&_E)_ES%__ 1001 0110 0000 1001 OOO0O 0110 _6_91__',
KEY ASCII(HEX) BINARY BCD(UNPACKED)
0 30 011 0000 0000 0000
1 31 011 0001 0000 0001
2 32 011 0010 0000 0010
3 33 011 0011 0000 0011
4 34 0110100 0000 0100
5 a5 011 0101 0000 0101
6 36 0110110 0000 0110
7 37 0110111 0000 0111
4 28 011 1000 0000 1000
g a9 011 1001 0000 1001

Input: Unpacked BCD number = 05h Input: ASCIl number = 35
Output: ASCIl number = 35 Output: Unpacked BCD number = 05h

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

Packed BCD to ASCIl number program
Input: Packed BCD number = 12h= 0001 0010
Output: ACSCIIl: 31 32 =0011 0001 0011 0020

org 00h

mov a, #12h

anl a, #0fOh /// a = 10h
swap a /// a=01h
add a, #30h /// a =31h
movrl,a///rl=31h
mov a, #12h

anl a, #0fh ///a = 02h
add a, #30h /// a=32h
Mov r2, a

end

Store the final answer in rl1,r2 register

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

ASCIl number to packed BCD number program
Input: ACSCII: 31 32 =0011 0001 0011 0020
Output: Packed BCD number = 12h=0001 0010

org 00h Take the input from 2000h = 31h and 2001h =32h

mov dptr, #2000h Store the final answer in 20h location
movx a, @dptr /// a=31h

subb a, #30h //// a = 01h

movrl,a /////rl=01h

Inc dpl //// 2000h becomes =» 2001h

Movx a,@dptr ///a =32h

subb a, #30 /// a = 02h

mov r2,a/// r2 ==02h since rl1 =01h, r2 = 02h, but answer 12h => 20h

mov a, rl//// a=01h

swap a //// a=10h

orla,r2//// a=10h or 02h =» 0001 0000 Or 0000 0010 => 0001 0010 =»12h
mov 20h, a

end Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

8051 ALP HEX to DECIMAL code conversion

Ovg ook on)ps (1 on)\ (4
MOV R -t ABKR aA 0P

Mmov B, HOAHK ol Oj._..

div P8)
MOV 32h, B)LLLO%[0l
MOV B, #0Rh - Zoe 3lh d2h
div AR -

MO\, 31 h) B opxXUl=AA > PB-AA=0I
Moy 30h, R opx| =0A, N-0R=03-
End -
lp = PB

ofp= (3H

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

| peczned fo
| O"CJ 00 [7

L moV QfH 8%
and Q00
Swep G

"mov b, Hoah

mul O[b
mo\/ 7 /4

Moy Cu #84 2
and q;ﬂOFh

&(’ld JOVRT
end.

ol lerca aconat

‘|p >890

)

org 00h
mov a,#17
mov b,#16
div ab
movrl, b
add a, #09h
mov r5, a
mov r2,#01
mov a, rl
swap a
orla, r2
mov r3, a
anl a, #0fOh
swap a
mov b, #0ah
mul ab
movrl, a
mov a,r3
anl a, #0fh
add a, r1
mov r6, a
mov a, r5
end

Decimal to Hexadecimal Number

16)171(10
160
11
First division A=10=0Ah, B=11=0Bh
Answer =>AB h

16)165(10
160

05
First division A =10 = 0Ah, B = 05h
Answer => A5 h

16)212(13
208

04
First division A =13 =0Dh, B =04 = 04h
Answer =>D4 h

Dr. Vijaya Kumar H R, Associate.
Prof, Dept. of ECE, AIT, Tumkuru

Write an alp to convert Hexadecimal number to ASCII
number ?? Home work program

=» First we need to convert Hexadecimal number to
Decimal number (Packed)

=» Second we need to convert Decimal number to ASCII
number

0C h Hexadecimal number
=>» 12h Decimal number
=>» 31h &32h ASCIl number

Write an alp to convert ASCIl number to Hexadecimal
number ?? Home work problem

=» First we need to convert ASCIl number to Decimal
number (Packed)

=» Second we need to convert Decimal number to
Hexadecimal number

35h and 37h ASCIlI number
=» 57h Decimal number (Packed)
=» 87h is Hexadecimal final answer

Assume a push button switch is connected to port pin P1.2, Write an assembly language program to monitor the

switch and turn ON the LED’s connected to port P2 as long as the switch is pushed

+SV

I 4| C3

" 10uFr10V
T 9

s3 4

R3
8.2K

19

C1
/ G
\
ZZpF_]_ X1
-

c2 | 11.0562MHz .o
i
0—{\ 4
330F

sV SV 5V
'31 [40
EA Vee
R1
RST
P1.2
K1 S1
AT89S51 +l
[| R4 "N
AN —@
560 ohm LED
R4 '\'\/\|
XTAL1 PZ m—_— MWV \;S’
560 ohm LED
e 7.1 & 2 I R v s
GND Sk e

20

Ap— =

560 ohm LED

Switch Connect to => P1.2
8 LED’S Connected to => P2

If P1.2 switch press or on => 8 LED => on => FF h
If P1.2 switch not press or off => 8 LED => off =>

00h
P1.2 on or off => Setb, clr instruction used
SetB = P1.2 => on status, clr p1.2=> off status

org 00h

mov p1, #00h

mov p2, #00h /// 8 LED PINS Connected
clr p1.2 /// p1.2 = Switch is on status
again: jnb p1.2, ledoff

mov p2, #0ffh

sjmp again

ledoff: mov p2, #00h

sjmp again

end

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

Assume a push button switch Is connected
to port pin P23, Write an assembly
language program to monitor the switch
and to run the motor connected to port P3

as long as the switch Is pushed — Home
work

Assume a push button switch Is connected
to port pin P1.0, Write an assembly

language program to monitor the switch
and to run the RED LED at P2.4 for OFF
and Green LED at P25 for ON — Home

Work

Assume a push button switch are connected
to port pin P1.0 and P1.1, Write an
assembly language program to monitor the
switches and to run the RED LED1 at P2.4
for OFF by Pl.and Green LED1 at P2.5 for
ON and RED LEDZ? at P2.4 for OFF and
Green LED2 at P2.5 for ON — Home work

Why pull-up resistors are connected in 8051 Microcontroller

+Vcc * The reason for not having pull-ups for port O

-= On O OO

P0.0
P0O.1
P0.2
P0.3
P0.4
PO.5
P0.6
PO.7

é é é % é Internally 1s because this port uses for
§ > 2 > & Uk multiplexing of address and data that’s why

external pull ups are used and it depends on
T P what purpose we are going to use this port.
[0 When we use external pull-ups it becomes
s i general purpose port.
4
g
1 48 ° Again, port 0 Is open drain hence it requires

pull-ups and all other ports are not having

pull-up resistors = 10k open drain its not left to user. If port 0 has to

be used as 1/o port its must to connect pull
up resistor.

Dr. Vijaya Kumar H R, Associate. Prof, Dept. of ECE, AIT, Tumkuru

Find the Execution time for the following 12 MHZ for 1. DJNZ R1, BACK, 2. MUL AB, 3. movc a, @a+pc, 4. xchd a, @r1, 5.
5.addca, r5 6.divab

1.DJNZ R1, BACK:

* The execution time is 2 machine cycles if the jump is taken and 1 machine cycle if not taken.
2 machinecycles=2 /12 us=0.167 us

1 machinecycle=1/12 ps =0.083 ps

2. MUL AB:
* The execution time is 4 machine cycles.
* 4 machinecycles=4/12 us=0.333 ps

3. MOVX A, @A+PC: 2 machine cycles=2 / 12 us = 0.167 us
4. XCHD A, @R1: 1 machine cycle=1 /12 us = 0.083 ps

5. ADDC A, R5: 1 machine cycle=1 /12 us = 0.083 ps

6. DIV AB: 4 machine cycles=4 /12 pus = 0.333 ps

	0C 37 4F A4
	A = 0000 0000 00H
	Rotate instruction
	Rotate right with carry === RRC Rotate left with carry == RLC
	DELAY CALCULATION
	ASSEMBLER DIRECTIVES OF 8051
	MOTOR EQU 12H
	MOV P1, MOTOR /// P1 = 12H

