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Module 1: Introduction 

Computer Vision is a branch of Artificial Intelligence (AI) that enables computers to interpret 

and extract information from images and videos, similar to human perception. It involves 

developing algorithms to process visual data and derive meaningful insights. 

Think of how vivid the three-dimensional percept is when you look at a vase of flowers sitting on 

the table next to you. You can tell the shape and translucency of each petal through the subtle 

patterns of light and shading that play across its surface and effortlessly segment each flower from 

the background of the scene 

 

The human visual system has no problem interpreting the subtle variations in translucency and 

shading in this photograph and correctly segmenting the object from its background. 

Researchers in computer vision have been developing, in parallel, mathematical techniques for 

recovering the three-dimensional shape and appearance of objects in imagery. 

Here, the progress in the last two decades has been rapid. We now have reliable techniques for 

accurately computing a 3D model of an environment from thousands of partially overlapping 

photographs 

Why is vision so difficult? In part, it is because it is an inverse problem, in which we seek to recover 

some unknowns given insufficient information to fully specify the solution computer vision is being 

used today in a wide variety of real-world applications, which include: 

 

 Optical character recognition (OCR): reading handwritten postal codes on letters 

(Figure 1.4a) and automatic number plate recognition (ANPR); 

 Machine inspection: rapid parts inspection for quality assurance using stereo vision with 

specialized illumination to measure tolerances on aircraft wings or auto body parts (Figure 

1.4b) or looking for defects in steel castings using X-ray vision; 

 Retail: object recognition for automated checkout lanes and fully automated stores  

 Warehouse logistics: autonomous package delivery and pallet-carrying “drives” and 

parts picking by robotic manipulators (Figure 1.4c;) 

 Medical imaging: registering pre-operative and intra-operative imagery (Figure 1.4d) or 

performing long-term studies of people’s brain morphology as they age; 

 Self-driving vehicles: capable of driving point-to-point between cities (Figure 1.4) as well 

as autonomous flight  

 3D model building (photogrammetry): fully automated construction of 3D models 

from aerial and drone photographs (Figure 1.4f); 

 Match move: merging computer-generated imagery (CGI) with live action footage by 

tracking feature points in the source video to estimate the 3D camera motion and shape of 



the environment. Such techniques are widely used in Hollywood, e.g., in movies such as 

Jurassic Park; they also require the use of 

 Motion capture (mocap): using retro-reflective markers viewed from multiple cameras 
or other vision-based techniques to capture actors for computer animation; 

 Surveillance: monitoring for intruders, analysing highway traffic and monitoring pools 
for drowning victims  

 Fingerprint recognition and biometrics: for automatic access authentication as well 
as forensic applications. 

 

Consumer-level applications of Computer Vision: 

 Stitching: turning overlapping photos into a single seamlessly stitched panorama 

(Figure1.5a), • Exposure bracketing: merging multiple exposures taken under challenging 

lighting conditions (strong sunlight and shadows) into a single perfectly exposed image 

(Figure1.5b), 

 Morphing: turning a picture of one of your friends into another, using a seamless morph 

transition (Figure 1.5c); 

 3D modelling: converting one or more snapshots into a 3D model of the object or person 

you are photographing (Figure 1.5d),  

 Video match move and stabilization: inserting 2D pictures or 3D models into your 

videos by automatically tracking nearby reference points or using motion estimates to 

remove shake from your videos 



 Photo-based walkthroughs: navigating a large collection of photographs, such as the 

interior of your house, by flying between different photos in 3D 

 Face detection: for improved camera focusing as well as more relevant image searching 

Visual authentication: automatically logging family members onto your home computer as 

they sit down in front of the webcam 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 



A brief history: 

 

 1970s. When computer vision first started out in the early 1970s, it was viewed as the visual 

perception component of an ambitious agenda to mimic human intelligence and to endow 

robots with intelligent behaviour. Three-dimensional modelling of non-polyhedral objects 

was also being studied One popular approach used generalized cylinders, i.e., solids of 

revolution and swept closed curves 

 

 1980s. Image pyramids started being widely used to perform tasks such as image blending 

(Figure 1.8a) and coarse-to-fine correspondence search The use of stereo as a quantitative 

shape cue was extended by a wide variety of shape from- X techniques, including shape from 

shading 

 



 1990s. A lot of the initial activity was directed at projective reconstructions, which did not 

require knowledge of camera calibration Simultaneously, factorization techniques were 

developed to solve efficiently problems for which orthographic camera approximations were 

applicable Multi-view stereo algorithms (Figure 1.9c) that produce complete 3D surfaces 

were also an active topic of research. Tracking algorithms also improved a lot, including 

contour tracking using active contours such as snakes particle filters and level sets as well as 

intensity-based (direct) techniques  

Texture synthesis (Figure 1.10d) quilting and in painting) are additional topics that can be 

classified as computational photography techniques, since they re-combine input image 

samples to produce new photographs. 

 

 2010s. This trend was enabled by the development of high-quality large-scale annotated 

datasets such as ImageNet. Another major trend was the dramatic increase in computational 

power available from the development of general purpose (data-parallel) algorithms on 

graphical processing units (GPGPU). 
 

Photometric image formation: 
To produce an image, the scene must be illuminated with one or more light sources. Light sources 

can generally be divided into point and area light sources. 

A point light source originates at a single location in space (e.g., a small light bulb), potentially at 

infinity (e.g., the Sun). the Sun may have to be treated as an area light source.) In addition to its 

location, a point light source has an intensity and a colour spectrum, i.e., a distribution over 

wavelengths L(λ). The intensity of a light source falls off with the square of the distance between 

the source and the object being lit, because the same light is being spread over a larger (spherical) 

area. A light source may also have a directional falloff (dependence), but we ignore this in our 

simplified model. Area light sources are more complicated. A simple area light source such as a 

fluorescent ceiling light fixture with a diffuser can be modelled as a finite rectangular area emitting 

light equally in all directions  

This representation maps incident light directions v̂ to color values (or wavelengths), and is 

equivalent to assuming that all light sources are at infinity 

 
Reflectance and shading: 
 

When light hits an object’s surface, it is scattered and reflected Many different models have been 
developed to describe this interaction. In this section, we first describe the most general form, the 
bidirectional reflectance distribution function, and then look at some more specialized models, 
including the diffuse, specular, and Phong shading models. 

 

The Bidirectional Reflectance Distribution Function (BRDF): 
The most general model of light scattering is the bidirectional reflectance distribution function 

(BRDF).8 Relative to some local coordinate frame on the surface, the BRDF is a four-dimensional 

function that describes how much of each wavelength arriving at an incident direction  v̂𝑖 is emitted 

in a reflected direction v̂𝑟 (Figure 2.15b). The function can be written in terms of the angles of the 

incident and reflected directions relative to the surface frame as 

 
The BRDF is reciprocal, i.e., because of the physics of light transport, you can interchange the roles 
of v̂𝑖  and v̂𝑟  and still get the same answer. 



Most surfaces are isotropic, i.e., there are no preferred directions on the surface as far as light 
transport is concerned. 
 
 
For an isotropic material, we can simplify the BRDF to 

 
as the quantities ϴi, ϴr, and Фr - Фi can be computed from the directions v̂𝑖, v̂𝑟 and 𝑛̂ . 

 
Diffuse reflection: 
The diffuse component scatters light uniformly in all directions and is the phenomenon we most 

normally associate with shading, e.g., the smooth (non-shiny) variation of intensity with surface 

normal that is seen when observing 

a statue. 

Diffuse reflection also often imparts a strong body color to the light, as it is caused by selective 

absorption and re emission of light inside the object’s material 

While light is scattered uniformly in all directions, i.e., the BRDF is constant 

 
The amount of light depends on the angle between the incident light direction and the surface 

normal ϴi. 

This is because the surface area exposed to a given amount of light becomes larger at oblique angles, 

becoming completely self-shadowed as the outgoing surface normal points away from the light. 

The shading equation for diffuse reflection can thus be written as 

 
Where 

 
Specular reflection: 

The second major component of a typical BRDF is specular (gloss or highlight) reflection, which 

depends strongly on the direction of the outgoing light. Incident light rays are reflected in a 

direction that is rotated by 180° around the surface normal  𝑛̂ 

 

we can compute the specular reflection direction 𝑠̂𝑖 as 



 
Phong shading: 
Combined the diffuse and specular components of reflection with another term, which he called 

the ambient illumination. This term accounts for the fact that objects are generally illuminated not 

only by point light sources but also by a general diffuse illumination corresponding to inter-

reflection or distant sources, such as the blue sky.  

In the Phong model, the ambient term does not depend on surface orientation, but depends on the 

color of both the ambient illumination La(λ) and the object ka(λ), 

 
typical set of Phong shading model components as a function of the angle away from the surface 

normal 

Typically, the ambient and diffuse reflection color distributions ka(λ) and kd(λ) are the same, since 

they are both due to sub-surface scattering (body reflection) inside the surface material .The 

specular reflection distribution ks(λ) is often uniform (white), 

since it is caused by interface reflections that do not change the light color 
 

Di-chromatic reflection model: 
Di-chromatic reflection model, which states that the apparent color of a uniform material lit from 
a single source depends on the sum of two terms 

 
the radiance of the light reflected at the interface, Li, and the radiance reflected at the surface 
body, Lb. 
 

Global illumination: 
The simple shading model presented thus far assumes that light rays leave the light sources, bounce 

off surfaces visible to the camera, thereby changing in intensity or color, and arrive at the camera.  

Two methods have traditionally been used to model such effects. If the scene is mostly specular 

(the classic example being scenes made of glass objects and mirrored or highly polished balls), the 

preferred approach is ray tracing or path tracing Combinations of the two techniques have also 

been developed as well as more general light transport techniques for simulating effects such as the 

caustics cast by rippling water. primary contribution can then be computed using the simple 

shading equations presented previously for all light sources that are visible for that surface element. 



 

Optics: 
Once the light from a scene reaches the camera, it must still pass through the lens before reaching 

the analog or digital sensor. For many applications, it suffices to treat the lens as an ideal pinhole 

that simply projects all rays through a common center of projection the thin lens composed of a 

single piece of glass with very low, equal curvature on both sides. According to the lens law 

 
relationship between the distance to an object zo and the distance behind the lens at which a 

focused image is formed zi can be expressed as where f is called the focal length of the lens. If we 

let zo, i.e., we adjust the lens (move the image plane) so that objects at infinity are in focus, we get 

zi = f, which is why we can think of a lens of focal length f as being equivalent (to a first 

approximation) to a pinhole at a distance f from the focal plane The allowable depth variation in 

the scene that limits the circle of confusion to an acceptable 

 
number is commonly called the depth of field and is a function of both the focus distance and the 

aperture, as shown diagrammatically by many lens markings. 

 
the focal plane is moved away from its proper in-focus setting of zi (e.g., by twisting the focus ring 

on the lens), objects at Zo are no longer in focus. 

The amount of misfocus is measured by the circle of confusion c (shown as short thick blue line 

segments on the gray plane). The equation for the circle of confusion can be derived using similar 

triangles; it depends on the distance of travel in the focal plane ΔZi relative to the original focus 

distance Zzi and the diameter of the aperture d.  



 

Vignetting 
The tendency:y for the brightness of the image to fall off towards the edge of the image. 

Two kinds of phenomena usually contribute to this effect. 

The first is called natural vignetting and is due to the foreshortening in the object surface, projected 

pixel, and lens aperture, 

Consider the light leaving the object surface patch of size δo located at an off-axis angle α  . Because 

this patch is foreshortened with respect to the camera lens, the amount of light reaching the lens is 

reduced by a factor cosα  

The amount of light reaching the lens is also subject to the usual 1/r2 fall-off; in this case, the 

distance in this case, the distance ro = Zo/ cos α. The actual area of the aperture through which the 

light passes is foreshortened by an additional factor cos α, i.e., the aperture as seen from point O is 

an ellipse of dimensions d*d cos α. Putting all of these factors together, we see that the amount of 

light leaving O and passing through the aperture on its way to the image pixel located at is 

proportional to 

 

The digital camera: 
After starting from one or more light sources, reflecting off one or more surfaces in the world, and 

passing through the camera’s optics (lenses), light finally reaches the imaging sensor. Light falling 

on an imaging sensor is usually picked up by an active sensing area, integrated for the duration of 

the exposure and then passed to a set of sense amplifiers. The two main kinds of sensor used in 

digital still and video cameras today are charge-coupled device (CCD) and complementary metal 

oxide on silicon (CMOS). 

 
 

In a CCD, photons are accumulated in each active well during the exposure time. Then, in a transfer 

phase, the charges are transferred from well to well in a kind of “bucket brigade” until they are 

deposited at the sense amplifiers, which amplify the signal and pass it to an analog-to-digital 



converter (ADC).13 Older CCD sensors were prone to blooming, when charges from one over-

exposed pixel spilled into adjacent ones, but most newer CCDs have anti-blooming technology 

 

In CMOS, the photons hitting the sensor directly affect the conductivity (or gain) of a 

photodetector, which can be selectively gated to control exposure duration, and locally amplified 

before being read out using a multiplexing scheme. Traditionally, CCD sensors outperformed 

CMOS in quality-sensitive applications, such as digital SLRs, while CMOS was better for low-power 

applications, but today CMOS is used in most digital cameras. 

 

The main factors affecting the performance of a digital image sensor are the shutter speed, 

sampling pitch, fill factor, chip size, analog gain, sensor noise, and the resolution (and quality) of 

the analog-to-digital converter. 

 
Shutter speed: The shutter speed (exposure time) directly controls the amount of light reaching 

the sensor and hence determines if images are under- or over-exposed For dynamic scenes, the 

shutter speed also determines the amount of motion blur in the resulting picture 

 
Sampling pitch. The sampling pitch is the physical spacing between adjacent sensor cells on the 

imaging chip A sensor with a smaller sampling pitch has a higher sampling density and hence 

provides a higher resolution (in terms of pixels) for a given active chip area 

 

Fill factor. The fill factor is the active sensing area size as a fraction of the theoretically available 

sensing area Higher fill factors are usually preferable, as they result in more light capture and less 

aliasing. 

 
Chip size. Video and point-and-shoot cameras have traditionally used small chip areas ( 1/4 - inch 

to 1/2 -inch sensors), while digital SLR cameras try to come closer to the traditional size of a 35mm 

film frame. When overall device size is not important, having a larger chip size is preferable, since 

each sensor cell can be more photo-sensitive. 

 
Analog gain. Before analog-to-digital conversion, the sensed signal is usually boosted by a sense 

amplifier. In video cameras, the gain on these amplifiers was traditionally controlled by automatic 



gain control (AGC) logic, which would adjust these values to obtain a good overall exposure. In 

newer digital still cameras, the user now has some additional control over this gain through the ISO 

setting, which is typically expressed in ISO standard units such as 100, 200, or 400 

 
Sensor noise. Throughout the whole sensing process, noise is added from various sources, which 

may include fixed pattern noise, dark current noise, shot noise, amplifier noise, and quantization 

noise 

 
ADC resolution. The final step in the analog processing chain occurring within an imaging sensor 

is the analog to digital conversion (ADC). While a variety of techniques can be used to implement 

this process, the two quantities of interest are the resolution of this process and its noise level 

 
Digital post-processing. Once the irradiance values arriving at the sensor have been converted 

to digital bits, most cameras perform a variety of digital signal processing (DSP) operations to 

enhance the image before compressing and storing the pixel values. These include color filter array 

(CFA) demosaicing, white point setting, and mapping of the luminance values through a gamma 

function to increase the perceived dynamic range of the signal. 

 
Newer imaging sensors. The capabilities and compatibility of imaging sensor and related 

technologies such as depth sensors continue to evolve rapidly. Conferences that track these 

developments include the IS&T Symposium on Electronic Imaging Science and Technology 

sponsored by the Society for Imaging Science and Technology and the Image Sensors World blog. 
 

Sampling and aliasing: 
The photons arriving at each active cell are integrated and then digitized, if the fill factor on the 
chip is small and the signal is not otherwise band-limited, visually unpleasing aliasing can occur. 
 
To explore the phenomenon of aliasing, let us first look at a one-dimensional signal in which we 
have two sine waves, one at a frequency of f = 3/4 and the other at f = 5/4. If we sample these two 
signals at a frequency of f = 2, we see that they produce the same samples (shown in black), and so 
we say that they are aliased. 

 
The maximum frequency in a signal is known as the Nyquist frequency and the inverse of the 

minimum sampling frequency rs = 1/fs is known as the Nyquist rate. 

 

The best way to predict the amount of aliasing that an imaging system will produce is to estimate 

the point spread function (PSF), which represents the response of a particular pixel sensor to an 

ideal point light source.  



The PSFis a combination (convolution) of the blur induced by the optical system (lens) and the 

finite integration area of a chip sensor. 

 
Color: 

When the incoming light hits the imaging sensor, light from different parts of the spectrum is 

somehow integrated into the discrete red, green, and blue (RGB) color values that we see in a 

digital image. 

 
Color cameras: 
The design of RGB video cameras has historically been based around the availability of colored 

phosphors that go into television sets. When standard-definition color television was invented a 

mapping was defined between the RGB values that would drive the three color guns in the cathode 

ray tube (CRT) and the XYZ values that unambiguously define perceived color (this standard was 

called ITU-R BT.601). With the advent of HDTV and newer monitors, a new standard called ITU-

R BT.709 was created, which specifies the XYZ values of each of the color primaries, 

 
In practice, each color camera integrates light according to the spectral response function of its 

red, green, and blue sensors 



 
where L(λ) is the incoming spectrum of light at a given pixel and {SR(λ); SG(λ); SB(λ)} are the red, 
green, and blue spectral sensitivities of the corresponding sensors. 
 

Colour filter arrays: 

While early color TV cameras used three vidicons (tubes) to perform their sensing and later 

cameras used three separate RGB sensing chips, most of today’s digital still and video cameras 

use a color filter array (CFA) 

The most commonly used pattern in color cameras today is the Bayer pattern, which places green 

filters over half of the sensors (in a checkerboard pattern), and red and blue filters over the 

remaining ones The reason that there are twice as many green filters as red and blue is because the 

luminance signal is mostly determined by green values and the visual system is much more 

sensitive to high-frequency detail in luminance 

than in chrominance 

 

The process of interpolating the missing color values so that we have valid RGB values for all the 

pixels is known as demosaicing 

 
 

Gamma: 
The relationship between the voltage and the resulting brightness was characterized by a number 
called gamma (), since the formula was roughly 

 



 

Compression: 
The last stage in a camera’s processing pipeline is usually some form of image compression All color 

video and image compression algorithms start by converting the signal into YCbCr (or some closely 

related variant), so that they can compress the luminance signal with higher fidelity than the 

chrominance signal. In video, it is common to subsample Cb and Cr by a factor of two horizontally; 

with still images (JPEG), the subsampling (averaging) occurs both horizontally and vertically. 

Once the luminance and chrominance images have been appropriately subsampled and separated 

into individual images, they are then passed to a block transform stage. The most common 

technique used here is the discrete cosine transform (DCT), which is a real-valued variant of the 

discrete Fourier transform (DFT) 



 

 

 

 

 

 

 



Image processing 
Point operators: 
The simplest kinds of image processing transforms are point operators, where each output pixel’s 
value depends on only the corresponding input pixel value. 
Pixel transforms: 

A general image processing operator is a function that takes one or more input images and 

produces an output image. In the continuous domain, this can be denoted as 

 

where x is in the D-dimensional (usually D = 2 for images) domain of the input and output 

functions f and g, which operate over some range, which can either be scalar or vector valued, 

e.g., for color images or 2D motion 

For discrete (sampled) images, the domain consists of a finite number of pixel locations, x = (i; j), 

and we can write 

g(i; j) = h(f(i; j)) 
Color transforms: 
While color images can be treated as arbitrary vector-valued functions or collections of 
independent bands, it usually makes sense to think about them as highly correlated signals 
withstrong connections to the image formation process sensor design and human perception 
 
Color balancing (e.g., to compensate for incandescent lighting) can be performed either by 
multiplying each channel with a different scale factor or by the more complex process of mapping 
to XYZ color space, changing the nominal white point, and mapping back to RGB, which can be 
written down using a linear 3* 3 color twist transform matrix. 
 

Compositing and matting: 
The process of extracting the object from the original image is often called matting while the 
process of inserting it into another image (without visible artifacts) is called compositing 
 

 

The intermediate representation used for the foreground object between these two stages is called 

an alpha-matted color image , In addition to the three color RGB channels, an alpha-matted image 

contains a fourth alpha channel α (or A) that describes the relative amount of opacity or fractional 

coverage at each pixel 

The opacity is the opposite of the transparency. Pixels within the object are fully opaque (α= 1), 

while pixels fully outside the object are transparent (α = 0). Pixels on the boundary of the object 

vary smoothly between these two extremes, 

 

This operator attenuates the influence of the background image B by a factor (1-α) and then adds 
in the color (and opacity) values corresponding to the foreground layer F 
 

 



Histogram equalization: 
the histogram of the individual color channels and luminance values, From this distribution, we 

can compute relevant statistics, such as the minimum, maximum, and average intensity values. the 

image will have has both an excess of dark values and light values, but that the mid-range values 

are largely under-populated. Would it not be better if we could simultaneously brighten some dark 

values and darken some light values, m histogram equalization, i.e., to find an intensity mapping 

function f(I) such that the resulting histogram is flat. The trick to finding such a mapping is the 

same one that people use to generate random samples from a probability density function, which 

is to first compute the cumulative distribution function  

 

Application: Tonal adjustment: 

One of the most widely used applications of point-wise image processing operators is the 

manipulation of contrast or tone in photographs, to make them look either more attractive or more 

interpretable. You can get a good sense of the range of operations possible by opening up any photo 

manipulation tool and trying out a variety of contrast, brightness, and color manipulation options, 

 

Linear filtering 
Histogram equalization is an example of a neighborhood operator or local operator, which uses a 

collection of pixel values in the vicinity of a given pixel to determine its final output value 

neighbourhood operators can be used to filter images to add soft blur, sharpen details, accentuate 

edges, or remove noise. we look at linear filtering operators, which involve fixed weighted 

combinations of pixels in small neighborhoods 

The most widely used type of neighborhood operator is a linear filter, where an output pixel’s value 

is a weighted sum of pixel values within a small neighborhood N 

 
The entries in the weight kernel or mask h(k; l) are often called the filter coefficients 



 

 

Padding (border effects): 
The astute reader will notice that the correlation produces a result that is smaller than the original 

image, which may not be desirable in many applications. This is because the neighborhoods of 

typical correlation and convolution operations extend beyond the image boundaries near the edges, 

and so the filtered images suffer from boundary effects. 



To deal with this, a number of different padding or extension modes have been developed for 

neighborhood operations: 

 zero: set all pixels outside the source image to 0 (a good choice for alpha-matted cutout 

images); 

 constant (border color): set all pixels outside the source image to a specified border value; 

 clamp (replicate or clamp to edge): repeat edge pixels indefinitely; 

 (cyclic) wrap (repeat or tile): loop “around” the image in a “toroidal” configuration; 

 mirror: reflect pixels across the image edge; 

 extend: extend the signal by subtracting the mirrored version of the signal from the edge 

pixel value. 

 

 
Separable filtering: 
The process of performing a convolution requires K2 (multiply-add) operations per pixel, where K 

is the size (width or height) of the convolution kernel, e.g., the box filter. 

In many cases, this operation can be significantly sped up by first performing a one-dimensional 

horizontal convolution followed by a one-dimensional vertical convolution, which requires a total 

of 2K operations per pixel. A convolution kernel for which this is possible is said to be separable 

It is easy to show that the two-dimensional kernel K corresponding to successive convolution with 

a horizontal kernel h and a vertical kernel v is the outer product of the two kernels, 

 



 

Examples of linear filtering 

The simplest filter to implement is the moving average or box filter, which simply averages the pixel 

values in a K*K window. This is equivalent to convolving the image with a kernel of all ones and 

then scaling. 

For large kernels, a more efficient implementation is to slide a moving window across each scanline 

(in a separable filter) while adding the newest pixel and subtracting the oldest pixel from the 

running sum. This is related to the concept of summed area tables, 

A smoother image can be obtained by separably convolving the image with a piecewise linear “tent” 

function (also known as a Bartlett filter , the bilinear kernel, since it is the outer product of two 

linear (first-order) splines Convolving the linear tent function with itself yields the cubic 

approximating spline, which is called the “Gaussian” kernel, Note that approximate Gaussian 

kernels can also be obtained by iterated convolution with box filters 

The kernels we just discussed are all examples of blurring (smoothing) or low-pass kernels, since 

they pass through the lower frequencies while attenuating higher frequencies smoothing kernels 

can also be used to sharpen images using a process called unsharp masking. Since blurring the 

image reduces high frequencies, adding some of the 

difference between the original and the blurred image makes it sharper

 

Band-pass and steerable filters 
The Sobel and corner operators are simple examples of band-pass and oriented filters. More 

sophisticated kernels can be created by first smoothing the image with a (unit area) Gaussian filter, 

and then taking the first or second derivatives Such filters are known collectively as band-pass 

filters, since they filter out both low and high frequencies 

 
The (undirected) second derivative of a two-dimensional image 

 

is known as the Laplacian operator. Blurring an image with a Gaussian and then taking its 
Laplacian is equivalent to convolving directly with the Laplacian of Gaussian (LoG) filter, which has certain nice 
scale-space properties 

 



 

 

Summed area table (integral image): 
If an image is going to be repeatedly convolved with different box filters (and especially filters of 

different sizes at different locations), you can precompute the summed area table which is just the 

running sum of all the pixel values from the origin ,  

 
, This can be efficiently computed using a recursive (raster-scan) algorithm 

 

The image s(i; j) is also often called an integral image and can actually be computed using only 

two additions per pixel if separate row sums are used 

 

 
 
 
 



Recursive filtering: 
one whose values depends on previous filter outputs. In the signal processing literature, such filters 

are known as infinite impulse response (IIR), since the output of the filter to an impulse (single 

non-zero value) goes on forever. Two-dimensional IIR filters and recursive formulas are sometimes 

used to compute quantities that involve large area interactions, such as two-dimensional distance 

functions and connected components 


