iy, AKSHAYA INSTITUTE OF

O e ',

"%g TECHNOLOGY

A S' Lingapura, Tumkur-Koratagere Road, Tumkur-572106.
"" lUl\rl;(LR ‘S:

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
Module 1

“Design & Analysis of Algorithm”

Prepared by: -

Mrs. Ashwini Singh S

Ms. Trupthi.V

Mrs.Keerthishree P V

Assistant Professors,

Department of CSE.

Akshaya Institute of Technology, Tumakuru



AKSHAYA INSTITUTE OF TECHNOLOGY

Lingapura, Obalapura Post, Koratagere Road, Tumakuru - 572106
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

)  VISION

To empower the students to be technically
competent, innovative and self-motivated with
human wvalues and contribute significantly
towards betterment of society and to respond
swiftly to the challenges of the changing world.

COMPUITER SCIENCE
5 = & ENGINEERING

Program Specific Outcomes (PS0Os)

After Successful Completion of Computer Science

and Engineering Program Students will be able to

* Apply fundamental knowledge for professional
software development as well as to acquire new
skills.
Implement disciplinary knowledge in problem
solving, analyzing and decision-making
abilities through different domains like database
management, networking, algorithms, and
programming as well as research and
development.
Make use of modern computer tools for creating
innovative career paths, to become an
entrepreneur or desire for higher studies.

MISSION

M1: To achieve academic excellence by
imparting in-depth and competitive knowledge
to the students through effective teaching
pedagogies and hands on experience on cutting
edge technologies.

M2: To collaborate with industry and academia
for achieving quality technical education and
knowledge transfer through active participation
of all the stake holders.

M3: To prepare students to be life-long learners
and to upgrade their skills through Centre of
Excellence in the thrust areas of Computer

. Science and Engineering.

Program Educational Objectives (PEOs)

PEO1: Graduates expose strong skills and
abilities to work in industries and research

organizations.

PEO3: Graduates engage in team work to
function as responsible professional with good
ethical behavior and leadership skills.

PEO3: Graduates engage in life-long learning
and innovations in multi disciplinary areas.




SYLLABUS

UNIT -1

INTRODUCTION:  Algorithm, Performance  Analysis-Space
complexity, Time complexity, Asymptotic Notations- Big oh notation,
Omega notation, Theta notation and Little oh notation. Divide and
conquer: General method, applications-Binary search, Quick sort,
Merge sort, Stassen's matrix multiplication.

UNIT-11
Disjoint Sets: Disjoint set operations, union and find algorithms
Backtracking: General method, applications, n-queen’s problem, sum
of subsets problem, graph coloring




= UNIT-TIT ==y

Dynamic Programming: General method, applications-
Optimal binary search trees, 0/1 knapsack problem, All
pairs shortest path problem, Traveling sales person
problem, Reliability design.

UNIT -1V
Greedy  method: General method, applications-Job
sequencing with deadlines, knapsack problem, Minimum
cost spanning trees, Single source shortest path problem.




UNIT-V
Branch and Bound: General method, applications -
Travelling sales person problem, 0/1 knapsack problem - LC
Branch and Bound solution, FIFO Branch and Bound solution.
NP-Hard and NP-Complete problems: Basic concepts, non
deterministic algorithms, NP - Hard and NP-Complete classes,

Cook’s theorem.

TEXT BOOKS
I. Fundamentals of Computer Algorithms, Ellis Horowitz,
Satraj Sahni and Rajasekharan,3™ Edition University Press.



REFERENCES

* Design and Analysis of Algorithms, Aho, Ullman and,
Pearson education.

* Introduction to Algorithms, second edition, T.H.
Coremen, C.E Leiserson, R.L.Rivest and C. Stien, PHI
Pvt . Ltd./Pearson Education.

» Algorithm Design; Foundations, Analysis and Internet
Examples, M.T. Goodrich and R. Tamassia, John Wiley
and sons.



—

R ———

INTRODUCTION

» The word algorithm comes from the name of the person author

-Abu Jafar Mohammed Ibn Musa Al khowarizmi who wrote

A text book entitled-"Algorithmi de numero indorum™ Now term” Algorithmi
“in the title of the book led to the term Algorithm.

» An algorithm is an effective method for finding out the solution for a given
problem. It is a sequence of instruction
That conveys the method to address a problem

» Algorithm : Step by step procedure to solve a computational problem is
called Algorithm.
or

»An Algorithm is a step-by-step plan for a computational procedure
that possibly begins with an input and yields an output value in a finite
number of steps in order to solve a particular problem.




INTRODUCTION

An algorithm is a set of steps of operations to solve a problem
performing calculation, data processing, and automated reasoning
tasks.

An algorithm is an efficient method that can be expressed within finite
amount of Time and space.

The important aspects of algorithm design include creating an efficient
algorithm to solve a problem in an efficient way using minimum time
and space.

To solve a problem, different approaches can be followed. Some of
them can be efficient with resgpqt to time consumption, whereas other
approaches may be memory efficient.




L e
P PROPERTIES OF ALGO

TO EVALUATE AN ALGORITHM WE HAVE TO SATISFY THE FOLLOWING
CRITERIA:

LLINPUT: The Algorithm should be given zero or more input.

2.0UTPUT: At least one quantity is produced. For each input the algorithm
produced value from specific task.

3.DEFINITENESS: Each instruction is clear and unambiguous.

4. FINITENESS: If we trace out the instructions of an algorithm, then for all cases,
the algorithm terminates after a finite number of steps.

S.EFFECTIVENESS: Every instruction must very basic so that it can be carried
out, in principle, by a person using only pencil & paper.



~ A well-defined computational procedure that takes some value, or
set of values, as /input and produces some value, or set of values,
as output.

~ Written in a pseudo code which can be implemented in the
language of programmer’s choice.

PSEUDO CODE: A notation resembling a simplified programming
language, used in program design.




Step-1:start
Step-2:Read a,b,c
Step-3:ifa>b

if a>c

print a is largest

else

if b>c

print b is largest

else

print cis largest
Step-4 : stop

How To Write an

—

e

Algorithm
Step-1: start
Step-2: Read a,b,c
Step-3:if a>b then go to step 4
otherwise go to step 5
Step-4:if a>c then
print a is largest otherwise
print c is largest
Step-5: if b>c then
print b is largest otherwise
print ¢ is largest
step-6: stop




Differences

Algorithm

1.At design phase
2.Natural language

3.Person should have
Domain knowledge
4.Analyze

|

Program
1.At Implementation phase
2.written in any

programming language
3.Programmer

4 4.Testing



= ‘— ' = — — -.-,,._;;_—,_. _—
ALGORITHM SPECIFICATION

Algorithm can be described (Represent) in four ways.

| .Natural language like English:
When this way is chooses, care should be taken, we
should ensure that each & every statement is definite.

(no ambiguity)

2. Graphic representation called flowchart:
This method will work well when the algorithm is small&
simple.
3. Pseudo-code Method:

In this method, we should typically describe algorithms as program,
which resembles language like Pascal & Algol(Algorithmic Language).
4.Programming Language:

we have to use programming language to write algorithms like

C, C++,JAVA etc.




= \

PSEUDO-CODE CONVENTIONS

1.  Comments begin with // and continue until the end of line.
2. Blocks are indicated with matching braces { and |.

3. Anidentifier begins with a letter. The data types of variables are not
explicitly declared.
node= record
d
data type | data 1;
data type n data n;
node *link;
i
4. There are two Boolean values TRUE and FALSE.
Logical Operators
AND, OR, NOT

Relational Operators
<9 <=9>9>=9 =9 !=



5. Assignment of values to variables is done using the assignment statement.
<Variable>:= <expression>;

6. Compound data types can be formed with records. Here is an example,
Node. Record
d

data type — | data-1;

data type —n data —n;
node * link;

i

Here link is a pointer to the record type node. Individual data items of
a record can be accessed with = and period.




Contd...
7. The following looping statements are employed.
For, while and repeat-until While Loop:
While < condition > do

{

<statement-1>

<statement-n>

j

For Loop:
For variable: = value-1 to value-2 step step do

<statement-1>

<statement-n>
!




repeat-until:

repeat
<statement-1>

<statement-n>
until<condition>

8. A conditional statement has the following forms.

- If <condition> then <statement>
- If <condition> then <statement-1>
Else <statement-1>




Case statement:

Case

{
: <condition-1> : <statement-1>
: <condition-n> : <statement-n>
: else : <statement-n+1>

|

9. Input and output are done using the instructions rcad & write. No
format is used to specify the size of input or output quantities




Contd...
IOfThere is only one type of procedure: Algorithm, the heading takes the
orm,

Algorithm Name (Parameter lists)

consider an example, the following algorithm fields & returns the
maximum of n given numbers:

algorithm Max(A,n)

// A is an array of size n
{

Result := A[1]:

fori1:=2 tondo

if A[i] > Result then
Result :=A[i];

return Result;

)




Issue in the study of algorithm

How to create an algorithm.
How to validate an algorithm.
How to analyses an algorithm
How to test a program.

| .How to create an algorithm: To create an algorithm we have following design

technique
a) Divide & Conquer

b) Greedy method

¢) Dynamic Programming
d) Branch & Bound

e) Backtracking




- / =

2.How to validate an algorithm: Once an algorithm is created it
1s necessary to show that it computes the correct output for all possible
legal input , this process is called algorithm validation.

3.How to analyses an algorithm: Analysis of an algorithm or

performance analysis refers to task of determining how much computing

Time & storage algorithms required.

a) Computing time-Time complexity: Frequency or Step count method

b) Storage space- To calculate space complexity we have to use number
of input used in algorithms.

4.How to test the program: Program is nothing but an expression
for the algorithm using any programming language. To test a program
we need following
a) Debugging: It is processes of executing programs on sample data sets
to determine whether faulty results occur & if so correct them.
b) Profiling or performance measurement is the process of executing a
correct program on data set and measuring the time & space it takes
to compute the result.



ANALYSIS OF ALGORITHM

PRIORI POSTERIORI
1.Done priori to run algorithm 1.Analysis after running
on a specific system \ it on system.
2.Hardware independent 2.Dependent on hardware
3.Approximate analysis 3.Actual statistics of an
algorithm
4.Dependent on no of time ‘ 4.They do not do posteriori

statements are executed | analysis

l



p—

Problem: Suppose there are 60 students in the class. How will
you calculate the number of absentees in the class?

Pseudo Approach

1.Initialize a variable called as Count to zero, absent to
zero, total to 60

2.FOR EACH Student PRESENT DO the following:
Increase the Count by One

3.Then Subtract Count from total and store the result
in absent

4.Display the number of absent students




f ” — ) ;;::';';;:—‘7 = — ‘\-‘ — e — , p— — -
L
P

Problem: Suppose there are 60 students in the class. How will
you calculate the number of absentees in the class?

Algorithmic Approach:
1.Count <- 0, absent <- o, total <- 60

2.REPEAT till all students counted
Count <- Count + 1

3.absent <- total - Count
4.Print "Number absent is:" , absent




= Need of Algorithm

1. To understand the basic idea of the problem.
2. To find an approach to solve the problem.
3. To improve the efficiency of existing techniques.

4. To understand the basic principles of designing the
algorithms. To compare the performance of the algorithm
with respect to other techniques.

6. It is the best method of description without describing the
implementation detail.

7. The Algorithm gives a clear description of requirements
and goal of the problem to the designer.

8. A good design can produce a good solution.
9. To understand the flow of the problem.




— o — -~
——

= R — i
- g

- '_ ‘ _— et
PERFORMANCE ANALYSIS

Performance Analysis: An algorithm is said to be cfficient and fast
if it take less time to execute and consumes less memory space at run time
is called Performance Analysis.

1. SPACE COMPLEXITY:

The space complexity of an algorithm is the amount of Memory
Space required by an algorithm during course of execution is called
space complexity .There are three types of space

a) Instruction space :executable program
b) Data space: Required to store all the constant and variable data

space.
c) Eliwironment: It is required to store environment information needed
to resume the suspended space.
2. TIME COMPLEXITY:
The time complexity of an algorithm is the total amount of time
required by an algorithm to complete its execution.




Space complexity

Now there are two types of space complexity

a) Constant space complexity

b) Linear(variable)space complexity




* L.Constant space complexity: A fixed amount of space for
all the input values.

Example : int square(int a)
{

return a*a;

J

Here algorithm requires fixed amount of space forall
the input values.




S —

~_2:Linear space complexityz The space needed for

algorithm is based on size.
~ Size of the variable 'n’ = 1 word
~ Array of a values = n word
» Loop variable =1word
»Sum variable =1 word

Example:

int sum(int A[],int n)

{ n

int sum=o,i; 1

for (i=0;i<n;i++) 1

Sum=sum+A[i]; 1

Return sum;

} AnS : 14N+1+1

n+3 words




S —

——

it Space Complexity

The space complexity of an algorithm is the amount of
memory it needs to run to complete.

Space needed by an algorithm is given by
S(P)=C(fixed part )+Sp(Variable part)

Fixed part: independent of instance characteristics.
eg: space for simple variables, constants etc

Variable part: Space for variables whose size is dependent on
particular problem instance.




Examples:

1.Algorithm sum(a,,b,c)
{

a=10;

b=20;

c=a+b;
J
s(p)=c+sp
3+0=3
o(n)=3




2. algorithm sum(a,n)

{

total-=0; -1

Fori=1 to n do -1,1
Total=total+a[i]--n

Return total




/ﬁ—

Algorithm-1
. Algorithm-3
Algorithm abc(a,b,c) a1 M

( 2 .
return a+b*c+(a+b-¢)/(a+b) +4.0; 1 {Algonthm RSum(a;n)

T if(n<0) then return 0.0;
} ¢ >=3Units | olse return Rsum(a,n-1)+a[n];

o }

Algorithm-2 _

Algorithm sum(a,n) i,n,s=>1 unit each !

! 3=n units Rsum(a,n)=>1(3[n])+1(n)+1(return)=3units
5=0.0; S Rsum(a,n-1)>1(a[n-1])+1(n)+1(return)

+ fori=1tondo >=n+1 units
s=s+a[i];
returns;

Rsum(a,n-n)>1(3[n-n])+1(n)+1(return)
Total->>=3(n+ 1) units

Algorithm-3:recursive procedure



2. Time Complexity:

The time complexity of an algorithm is the amount of
computer time it needs to run to complete.

T(P)= compile time+ execution time
T(P)=tp (execution time)

Step count: @

» For algorithm heading=>0

» For Braces=20

» For expressions—>1

» for any looping statements—=>no.of times the loop is repeating.



1.Constant time complexity : If a program required fixed

amount of time for all input values is called Constant
time complexity .

Example : int sum(inta, int b)

{

return a+b;

J




2.Linear time complexity: If the input values are
increased then the time complexity will changes.

» comments = o step
» Assignment statement= 1 step

~ condition statement= 1 step

~ loop condition for n times = n+1 steps
~ body of the loop = n steps



Example : int sum(int A[],int n)
{
int sum=o,1i;
for (i=0;i<n;i++)
sum=sum+Al[i|;
return sum;
repetation
1

1+(n+1)+n
n

1




Algorithm-1
1. Algorithm abc(a,b,¢)

2. { .
3. return a+b*c+(a+b-)/(a+b) +4.0; ?190“':""‘ RSum(a,n)

4. } if(n<0) then return 0.0:
else return Rsum(a,n-1)+a[n];

)
<D

Algorithm-3

Algorithm-2

. Algorithm sum(a,n) 30 T(n)=2 if n=0
K | S0 =2+T(n-1) ifn>0

1
2
3. s=0.0; 51 A i

4. fori=1tondo b : 21((23'(“.2))3 242+T(n-2)
5. s=s+a[i]; =n =2*24(24T(n-3))=2*3+T(n-3)
6. returns; 31 :

7

- =2'!*n+T(n-n)= 2n+T(0)
=2n+2

'| m +3 d




o 5
TIME COMPLEXITY

The time T(p) taken by a program P is the sum of the
compile time and the run time(execution time)

Statement Sle Frequency

I. Algorithm Sum(a,n)
2.{

3. S=0.0;

4. fori=ltondo
5. s=stall];

6 return s;

7




1.Worst-case: (usually)
* T(n) = maximum time of algorithm on any input of size n.

2.Average-case: (sometimes)
* T(n) = expected time of algorithm over all inputs of size n.
* Need assumption of statistical distribution of inputs.

3.Best-case:
* T(n) = minimum time of algorithm on any input of size n.

COMPLEXITY:
Complexity refers to the rate at which the storage time grows as a

function of the problem size




Analysis of an Algorithm

~The goal of analysis of an algorithm is to compare
algorithm in running time and also Memory

management.

» Running time of an algorithm depends on how long it
takes a computer to run the lines of code of the
algorithm.

Running time of an algorithm depends on
1.Speed of computer
2.Programming language
3.Compiler and translator
Examples: binar_y search, linear search




R ——

——

ASYMPTOTIC ANALYSIS:

» Expressing the complexity in term of its relationship
to know function. This type analysis 1s called
asymptotic analysis.

~The main i1dea of Asymptotic analysis i1s to have a
measure of efficiency of an algorithm , that doesn’t
depends on

1. Machine constants.
2.Doesn’t require algorithm to be implemented.
3.Time taken by program to be prepare.



———

e —

ASYMPTOTIC NOTATION

ASYMPTOTIC NOTATION: The mathematical way of
representing the Time complexity.
The notation we use to describe the asymptotic running time of

an algorithm are defined in terms of functions whose domains
are the set of natural numbers.

Definition : It is the way to describe the behavior of functions in
the limit or without bounds.

Asymptotic growth: The rate at which the function grows...

“growth rate” is the complexity of the function or the amount of
resource it takes up to compute.

v

Growth rate

Time +memory



Classification of growth

1.Growing with the same rate.
2. Growing with the slower rate.

3.Growing with the faster rate.




- D

—

They are 3 asymptotic notations are mostly used to
represent time complexity of algorithm.

1.Big oh (O)notation

2.Big omega (£2) notation
3.Theta(®) notation
4.Little oh notation

5.Little omega(£2) notation




1.Big oh (O)notation

I.Big oh (O)notation . Asymptotic “less than”(slower rate).This
notation mainly represent upper bound of algorithm run time.

Big oh (O)notation is useful to calculate maximum amount of time of
execution.

By using Big-oh notation we have to calculate worst case time complexity.

Formula : f(n)<=c g(n) nS=h; €50 0, >=1

Definition: Let f(n) ,g(n) be two non negative (positive) function
now the f(n)=0(g(n)) if there exist two positive constant ¢,no such that
f(n)<=c.g(n) forall value of n>0 & c>o0



1.Big O-notation

< For a given function g(n), we denote byO(g(n)) the set
of functions

£ (n) :there exist positive constants ¢ and n; s.t.
0< f(n)=<cg(n) forallnz=n,

O(g(n)) ={

“* We use O-notation to give an asymptotic upper bound of
a function, to within a constant factor.

% /(n)=0(g(n)) means that there existes some constant ¢
s.t. f(n) is always <cg(n) for large enough n.






Examples
Example: f(n)=2n+3 & g(n)=n

Formula : f(n)<=c g(n) n>=n, €>0,Nn,>=1

f(n)=2n+3 & g(n)=n

Now 3n+2<=c.n

3n+2<=4.n
Put the value of n =1

5<=4 false

N=2 8<=8true now no>2 Forallvalueofn>2 & c=4

now f(n)<= c.g(n)
3n+2<=4n for all value of n>2

Above condition is satisfied this  notation takes maximum amount of time to
execute .so that it is called worst case complexity.




Q-OMOQG notation : Asymptotic “greater than”(faster rate).

It represent Lower bound of algorithm run time.
By using Big Omega notation we can calculate minimum amount of
time. We can say that it is best case time complexity.

Formula : f(n)>=c g(n) n>=n, C>0,n,>=l

where c is constant, n is function
“* Lower bound
» Best case




0Q-Omega notation

 For a given functiong(n) , we denote by Q(g(n)) the
set of functions

J/ (n) :there exist positive constants ¢ and n s.t.
0<cg(n)< f(n) foralln=n,

Q(g(n)) = {

“ We use (O-notation to give an asymptotic lower bound on
a function, to within a constant factor.

< f(n)=Q(g(n)) means that there exists some constant ¢ s.t.
/(n) is always > cg(n) for large enough ».






Examples

Example: f(n)=3n+2

Formula : f(n)>=c g(n) n>=n, >0 ,Nn,>=1

f(n)=3n+2
3n+2>=1%n, c=1 put the value of n=1
5>=1true no>=1 forall value of n
[t means that f(n)= Q g(n).




3.0 -Theta notation

Theta (®) notation : Asymptotic “Equality”(same rate).

[t represent average bond of algorithm running time.
By using theta notation we can calculate average amount of time.
So it called average case time complexity of algorithm.

Formula: ¢, g(n)<=f(n)<=c, g(n)

where c is constant, n is function
“* Average bound




== O -Theta notation

“ For a given function g(n), we denote by ©O(g(n)) the set
of functions

O(g(n)) = {

/ (n) :there exist positive constants ¢;,c,,and n; s.t.
0<c,g(n)< f(n)<cyg(n)foralln=n,

< A function f(n) belongs to the set ©(g(n)) if there exist
positive constants ¢, and ¢, such that it can be "sand-
wiched” between ¢, g(n) and ¢, g(n) or sufficienly large n.

% f(n)=0O(g(n)) means that there exists some constant ¢,
and ¢, s.t. ¢ g(n)<f(n)<c,g(n) forlarge enough n.







Examples

Example: f(n)=3n+2
Formula: ¢, g(n)<=f(n)<=c, g(n)
f(n)=2n+3
1"n<=3n+2<=4"n now put the value of
n=1 we get 1<=5<=4 false
n=2 we get 2<=8<=8 true

n=3 we get 3<=11<=12 true
Now all value of n>=2 it is true above condition is satisfied.




4. Little oh notation
» Little o notation is used to describe an upper bound
that cannot be tight. In other words, loose upper

bound of f(n).

Slower growth rate
f(n) grows slower than g(n)

* Let f(n) and g(n) are the functions that map positive
real numbers. We can say that the function f(n) is
o(g(n)) if for any real positive constant c, there exists
an integer constant no < 1 such that f(n) > o.




<Using mathematical relation, we can say that f(n) =
o(g(n)) means,

'f lim f™ =0
n—o g(n)

<*Example on little o asymptotic notation:

1.If f(n) = n?> and g(n) = n3 then check whether
f(n) = o(g(n)) or not.



The result is o, and it satisfies the equation mentioned
above. So we can say that f(n) = o(g(n)).




5.Little omega(w) notation
* Another asymptotic notation is little omega notation.

it is denoted by (w).

* Little omega (w) notation is used to describe a loose
lower bound of f(n).

* Faster growth rate
* F(n) grows faster than g(n)

. ]

lim£™=p (00)

—~cr()

Formally stated as f(n)=wg(n)



R ———

—

Example of asymptotic notation

Problem:-Find upper bond ,lower bond & tight bond range for
functions: f(n)= 2n+5
Solution:-Let us given that f(n)= 2n+5 , now g(n)=n
lower bond=2n, upper bond =3n, tight bond=2n
For Big —oh notation(O):- according to definition
f(n)<=cg(n) for Big oh we use upper bond so
f(n)=2n+s5, g(n)=n and c=3 according to definition
2n+5<=3N
Putn=1 7<=3 false Putn=2 g<=6false Putn=3 14<=9 false
Put n=4 13<=12false Put n=5 15<=15true
now for all value of n>=5 above condition is satisfied. C=3 n>=5



2. Big - omega notation :- f(n)>=c.g(n) we know that this
Notation is lower bond notation so c=2
Let f(n)=2n+5 & g(n)=2.n
Now 2n+5>=c.g(n);
2n+5>=2n put n=1
We get 7>=2 true for all value of n>=1,c=2 condition is satisfied.

3. Theta notation :- according to definition
c1.g(n)<=f(n)<=c2.g




- e
~ ANALYSIS OF INSERTION-SORT(CONTD.)

*The worst case: The array is reverse sorted

(tj =j for j=2.3, ...,n).

n . n(n+1)
2~ %
T'(n)=cn+c,(n=1)+c;(n(n+1)/2-1)

+c,(n(n—=1)/2)+c,(n(n—-1)/2)+c,(n—1)

=(cs/2+¢c,/2+¢c,/2)n* +(¢,+¢c, +e,+¢,/2—c,/2—c,/2+c)n

T(n)=an2 +bn+c



e ———

RANDOMIZED ALGORITHMS

A randomized algorithm is an algorithm that employs a degree of

randomness as part of its logic.

The algorithm typically uses uniformly random bits as an auxiliary input
to guide its behavior, in the hope of achieving good performance in the

"average case" over all possible choices of random bits.

An algorithm that uses random numbers to decide what to do next

anywhere in its logic is called Randomized Algorithm..

Example: Quick sort




QUICK SORT

Select: pick an arbitrary element x in
S to be the pivot.

Partition: rearrange elements so that
elements with value less than x go to
List L to the left of x and elements
with value greater than x go to the
List R to the right of x.

Recursion: recursively sort the lists L
and R.

|III|I"|
x

|IIHIIII
x

L E G

—

|I|ﬂ||||
x



DIVIDE AND CONQUER

Given a function to compute on ‘n’ inputs the divide-and-conquer
strategy suggests splitting the inputs into ‘k’ distinct subsets, 1<k<=n,
yielding “k’ sub problems.

These sub problems must be solved, and then a method must be found
to combine sub solutions into a solution of the whole.

If the sub problems are still relatively large, then the divide-and-
conquer strategy can possibly be reapplied.




If the problem p and the size is n, sub problems are nl, n2 ....nk,
respectively, then the computing time of D And C is described by ‘the
recurrence relation.

T(n)= { g(n) nsmall
T(nl)+T(n2)+ +T(nk)+f(n);
otherwise.

“Where T(n) is the time for D And C on any I/p of size n.

g(n) is the time of compute the answer directly for small I/p s. f(n) is the
time for dividing P & combining the solution to sub problems.




Algorithm D And C(P)

{
if small(P) then return S(P);

else

{

divide P into smaller instances

Pl, P2... Pk, k>=1;

Apply D And C to each of these sub problems:

. return combine (D And C(P1), D And C(P2), ,D And C(Pk)):
10. }
11. }




EXAMPLE

Consider the case in which a=2 and b=2. Let T(1)=2 & f(n)=n. We have,
T(n) =2T(n/2)+n
2[2T(n/2/2)+n/2]+n

[4T(n/4)+n]+n
4T(n/4)+2n
4[2T(n/4/2)+n/4]+2n
4[2T(n/8)+n/4]+2n
8T(n/8)+n+2n
8T(n/8)+3n




23T(n/2%)+3n
By using substitution method

Let n=2k

K=l
08“2

K=3

28T(n/n)+3n

nT(1)+3N

2n+kn

2n+nlogn

Time complexity is O(nlogn)




APPLICATIONS

1. Binary Search is a searching algorithm. In each step, the algorithm

compares the input element x with the value of the middle element

in array. If the values match, return the index of middle. Otherwise,

if x is less than the middle element, then the algorithm recurs for
left side of middle element, else recurs for right side of middle

element.




2.Quick sort is a sorting algorithm. The algorithm picks a pivot element,
rearranges the array elements in such a way that all elements smaller than
the picked pivot element move to left side of pivot, and all greater elements
move to right side. Finally, the algorithm recursively sorts the sub arrays on

left and right of pivot element.

3.Merge Sort is also a sorting algorithm. The algorithm divides the array in

two halves, recursively sorts them and finally merges the two sorted halves.



"'\(_ — -
BINARY SEARCH
Algorithm Bin search(a,n,x)
// Given an array a[ 1 :n] of elements in non-decreasing
/lorder, n>=0,determine whether x is present and
/1 if so, return j such that x=a[j]; else return 0.

{

6. low:=1; high:=n;

7. while (low<=high) do

d

9 mid:=[(low+high)/2];

10, if (x<a[mid]) then high;

1. else if(x>a[mid]) then

12, low=mid+1;

13 else return mid;

14. }
return 0; |}

thn .‘;. ) J ——

o =



1) Let us select the 14 entries.
-15,6,0,7,9,23,54,82,101,112,125,131,142,151.
Place them in a[1:14] and simulate the steps Binsearch goes through as it
searches for different values of x.

Only the variables low, high & mid need to be traced as we simulate the
algorithm.

We try the following values for x: 151, -14 and 9.
for 2 successful searches & | unsuccessful search.




Table. Shows the traces of Bin search on these 3 steps.

X=151 high mid
14 7
14 "
14
14




* Another application of Divide and conquer is merge sort.

* Given a sequence of n elements a[1],...,a[n] the general idea is to imagine
then split into 2 sets a[1].,.....,a[n/2] and a[[n/2]+1].....a[n].

» Each set is individually sorted, and the resulting sorted sequences are
merged to produce a single sorted sequence of n elements.

* Thus, we have another ideal example of the divide-and-conquer strategy in
which the splitting is into 2 equal-sized sets & the combining operation is
the merging of 2 sorted sets into one.




~—~

ALGORITHM FOR MERGE SOR

* Algorithm MergeSort(low,high)

* //a[low:high] is a global array to be sorted

* //Small(P) is true if there is only one element

* //to sort. In this case the list is already sorted.

»iy

* if (low<high) then //if there are more than one element
® 1

* //Divide P into subproblems

* //find where to split the set

* mid = [(low+high)/2];

* //solve the subproblems.

* mergesort (low,mid);

* mergesort(mid+1,high): //combine the solutions .
* merge(low,mid,high);




_merge(low mld mgh) e -
v_, ,aﬂow"ﬁ" gh] is a global array containing two sorted subsets in a[low: mld] and in a[m|d+l -high].The
goal is to merge these 2 sets into a single set residing in aflow:high].b[] is an auxiliary global array.
¥
A
. h=low; I=low; j=mid+1:
. while ((h<=mid) and (j<=high)) do {
. if (a[h]<=a[j]) then {
. b[I}=a[h]:
. h=h+l;}
. else |
10.b[1]= a[j):
ILj=j+l;
12.1=1+1; }
13.if (h>mid) then
14.for k=j to high do {
15.b[1}=a[k];
16.1=1+1;
17.}
18.¢clse
19.for k=h to mid do
20.4
21.b[I]=a[k]:
22.1=1+1; }
23.for k=low to high do a[k] = b[k]; }




EXAMPLE

Consider the array of 10 elements a[1:10] =(310, 285, 179, 652, 351, 423,
861, 254, 450, 520)

Algorithm Mergesort begins by splitting a[] into 2 sub arrays each of size
five (a[1:5] and a[6:10]).

The elements in a[1:5] are then split into 2 sub arrays of size 3 (a[1:3] ) and
2(a[4:5])

Then the items in a [1:3] are split into sub arrays of size 2 a[1:2] &
one(a[3:3])

The 2 values in a[1:2] are split to find time into one-element sub arrays and
now the merging begins.




cn/2 R e ch
— 7N AN
— cnl4 cnl4 cnl4 cnld cn
/
/
B} e

Total = ®(n Ig n)




QUICK SORT

In Quick sort, the division into 2 sub arrays is made so that the sorted sub

arrays do not need to be merged later.

This is accomplished by rearranging the elements in a[ 1:n] such that
a[l]<=al[j] for all I between 1 & n and all j between (m+1) & n for some m,
|<=m<=n.

Thus the elements in a[ 1:m] & a[m+1:n] can be independently sorted.

No merge is needed. This rearranging is referred to as partitioning.




___Algorithm Partition(amp) .
3 [*within a|m],a[m+1], ,a[p-g the elements are rearranged in such a manner
that if initially t=a[m],then after completion a[q]=t for some q between m and
p-1,alk]<=t for m<=k<q, and a[k]>=t for q<k<p. q is returned Set a[p]=infinite. */
{
v=a[m];l=m;j=p;
repeat
{
repeat
I=1+1;
until(a[l]>=v);
repeat
i=
until(a[j]<=v);
if (I<j) then interchange(a,i.j);
}until(l>=j);
a[m]=alj}; a[jl=v;
retun j;
}
Algorithm Interchange(a,l,j) //Exchange a[l] with a[j]
{
p=all];
a[l]=aljl;
?[i]=P;

v .
—_ ()
’ oy

N NN BN

JiE e 1




_ gorithm: Sorting by Partitioning

— A Algorithm Quicksort(p.q)
* //Sort the elements a[p].....a[q] which resides

» //is the global array a[1:n] into ascending
//order; a[n+1] is considered to be defined

* // and must be >= all the elements in a[ 1:n]

b 3

* if(p<q) then // If there are more than one element
"

* // divide p into 2 subproblems

* j=partition(a,p,q+1);

* /"1 is the position of the partitioning element.
* //solve the subproblems.

* quicksort(p,j-1):

* quicksort(j+1.q);

* //There is no need for combining solution.

®

* }




WEBSITES

www.mit.edu
www.soe.stanford.edu
www.grad.gatech.edu
www.gsas.harward.edu
www.eng.ufl.edu
www.iitk.ac.in
www.iitd.ernet.in

WWW.ieee.org

1.
2,
3.
4.
S:
6.
7.
8.
9

www.ntpel.com
WWW.INTUWORLD.COM

www.firstrankers.com

— e —
&R i =

www. studentgalaxi.blogspot.com



SUGGESTED BOOKS

TEXT BOOKS

|. Fundamentals of Computer Algorithms, Ellis Horowitz,Satraj Sahni and
Rajasekharam,Galgotia publications pvt. Ltd.

2. Algorithm Design: Foundations, Analysis and Internet examples,
M.T.Goodrich and R.Tomassia,John wiley and sons.




REFERENCES

1. Introduction to Algorithms, secondedition, T.H.Cormen,C.E.Leiserson,
R.L.Rivest,and C.Stein,PHI Pvt. Ltd./ Pearson Education

2. Introduction to Design and Analysis of Algorithms A strategic
approach,

R.C.T.Lee, S.S.Tseng, R.C.Chang and T.Tsai, Mc Graw Hill.

3. Data structures and Algorithm Analysis in C++, Allen Weiss, Second
edition, Pearson education.




Thank You




