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Module 1   
 

Introduction 

A microcontroller is a small and low-cost microcomputer, which is designed to perform the 
specific tasks of embedded systems like displaying microwave’s information, receiving 
remote signals, etc. 

The general microcontroller consists of the processor, the memory (RAM, ROM, EPROM), 
Serial ports, peripherals (timers, counters), etc. 

Difference between Microprocessor and Microcontroller 

The following table highlights the differences between a microprocessor and a 
microcontroller  

Microcontroller Microprocessor 

Controlling Device 

Used in Embedded systems  

Microcontrollers are used to execute a 
single task within an application. 

Processing device 

Used in PC 

Microprocessors are used for big 
applications. 

Its designing and hardware cost is low. 
Its designing and hardware cost is 
high. 

Easy to replace. Not so easy to replace. 

It is built with CMOS technology, 
which requires less power to operate. 

 

It consists of CPU, RAM, ROM, I/O 
ports.  

Its power consumption is high 
because it has to control the entire 
system. 

It doesn’t consist of RAM, ROM, 
I/O ports. It uses its pins to 
interface to peripheral devices 

Uses internal bus to interface memory 
and Peripherals   

Uses external bus to interface 
Memory and peripherals  
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Types of Microcontrollers 

Microcontrollers are divided into various categories based on memory, architecture, bits and 

instruction sets. Following is the list of their types − 

Bit 

Based on bit configuration, the microcontroller is further divided into three categories.  

• 8-bit microcontroller − This type of microcontroller is used to execute arithmetic 
and logical operations like addition, subtraction, multiplication division, etc. For 
example, Intel 8031 and 8051 are 8 bits microcontroller.  

• 16-bit microcontroller − This type of microcontroller is used to perform arithmetic 
and logical operations where higher accuracy and performance is required. For 
example, Intel 8096 is a 16-bit microcontroller. 

• 32-bit microcontroller − This type of microcontroller is generally used in 
automatically controlled appliances like automatic operational machines, medical 
appliances, etc. 

Memory 

Based on the memory configuration, the microcontroller is further divided into two 
categories. 

• External memory microcontroller − This type of microcontroller is designed in 
such a way that they do not have a program memory on the chip. Hence, it is named 
as external memory microcontroller. For example: Intel 8031 microcontroller.  

• Embedded memory microcontroller − This type of microcontroller is designed in 

such a way that the microcontroller has all programs and data memory, counters and 
timers, interrupts, I/O ports are embedded on the chip. For example: Intel 8051 
microcontroller. 

Instruction Set 

Based on the instruction set configuration, the microcontroller is further divided into two 
categories. 

• CISC − CISC stands for complex instruction set computer. It allows the user to insert 
a single instruction as an alternative to many simple instructions.  

• RISC − RISC stands for Reduced Instruction Set Computers. It reduces the 
operational time by shortening the clock cycle per instruction.  
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Applications of microcontroller   

1. Consumer Electronics Products:  Toys, Cameras, Robots, Washing Machine, Microwave 

Ovens etc. [any automatic home appliance] 

2. Instrumentation and Process Control:  Oscilloscopes, Multi-meter, Leakage Current 
Tester, Data Acquisition and Control etc.  

3. Medical Instruments:  ECG machine, Electronic Cardiac Monitor, Blood gas analyzer, 
Blood Glucose Monitor, MRI Machine etc.  

 4. Communication:  Cell Phones, Telephone Sets, Answering Machines etc. 

 5. Office Equipment:  Fax, Printers, etc.  

 6. Multimedia Application:  Mp3 Player, PDAs, optical players, digital camcorders etc.  

 7. Automobile:  Speedometer, Auto-breaking system etc. 

 8. Robotics:  Domestic or household robots, Industrial robots, Medical robots, Service 

robots, Military robots, Entertainment robots, Space robots, 

 

 

ARM processor 

The ARM processor core is a key component of many successful 32-bit embedded systems. 
You probably own one yourself and may not even realize it! ARM cores are widely used 
in mobile phones, handheld organizers, and a multitude of other everyday portable consumer  

devices. 
 
ARM’s designers have come a long way from the first ARM1 prototype in 1985. Over 
one billion ARM processors had been shipped worldwide by the end of 2001. The ARM 
company bases their success on a simple and powerful design, which continues to 
improve today through constant technical innovation. In fact, the ARM core is not a 
single core, but a whole family of designs sharing similar design principles and a common  
instruction set. 

 
For example, one of ARM’s most successful cores is the ARM7TDMI. It provides up to 
120 Dhrystone MIPS1 and is known for its high code density and low power consumption, 
making it ideal for mobile embedded device 
 
RISC design philosophy 
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The ARM core uses a RISC architecture. RISC is a design philosophy aimed at 
delivering simple but powerful instructions that execute within a single cycle at a high 
clock speed. The RISC philosophy concentrates on reducing the complexity of 

instructions performed by the hardware because it is easier to provide greater flexibility 
and intelligence in software rather than hardware.  
 
The RISC philosophy is implemented with four major design rules: 

 
1. Instructions—RISC processors have a reduced number of instruction classes. These 

classes provide simple operations that can each execute in a single cycle. The compiler 
or programmer synthesizes complicated operations (for example, a divide operation) 
by combining several simple instructions. Each instruction is a fixed length to allow 
the pipeline to fetch future instructions before decoding the current instruction. In 
contrast, in CISC processors the instructions are often of variable size and take many 
cycles to execute. 

2. Pipelines—The processing of instructions is broken down into smaller units that can be  
executed in parallel by pipelines. Ideally the pipeline advances by one step on each cycle  
for maximum throughput. Instructions can be decoded in one pipeline stage. There is 
no need for an instruction to be executed by a miniprogram called microcode as on 
CISC processors. 

3. Registers—RISC machines have a large general-purpose register set. Any register can 
contain either data or an address. Registers act as the fast local memory store for all data   
processing operations. In contrast, CISC processors have dedicated registers for specific  
purposes. 

4. Load-store architecture—The processor operates on data held in registers. Separate load 
and store instructions transfer data between the register bank and external memory. 
Memory accesses are costly, so separating memory accesses from data processing pro- 
vides an advantage because you can use data items held in the register bank multiple 
times without needing multiple memory accesses. In contrast, with a CISC design the 

data processing operations can act on memory directly. 

 
These design rules allow a RISC processor to be simpler, and thus the core can 

operate at higher clock frequencies. In contrast, traditional CISC processors are more 
complex and operate at lower clock frequencies.  
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ARM Design Philosophy. 

There are a number of physical features that have driven the ARM processor design. 
First, portable embedded systems require some form of battery power. The ARM 
processor has been specifically designed to be small to reduce power consumption and 
extend battery operation—essential for applications such as mobile phones and personal 
digital assistants (PDAs). 

High code density is another major requirement since embedded systems have lim 
ited memory due to cost and/or physical size restrictions. High code density is useful 
for applications that have limited on-board memory, such as mobile phones and mass 
storage devices. 
In addition, embedded systems are price sensitive and use slow and low-cost memory 
devices. For high-volume applications like digital cameras, every cent has to be 
accounted for in the design. The ability to use low-cost memory devices produces 
substantial savings. Another important requirement is to reduce the area of the die taken 
up by the embedded processor. For a single-chip solution, the smaller the area used by 
the embedded processor, the more available space for specialized peripherals. This in 
turn reduces the cost of the 
design and manufacturing since fewer discrete chips are required for the end product. 
ARM has incorporated hardware debug technology within the processor so that software 
engineers can view what is happening while the processor is executing code. With 
greater visibility, software engineers can resolve issues faster, which has a direct effect on 
the time to market and reduces overall development costs. 
The ARM core is not a pure RISC architecture because of the constraints of its primary 
application—the embedded system. In some sense, the strength of the ARM core is 
that it does not take the RISC concept too far. In today’s systems the key is not raw 
processor speed but total effective system performance and power consumption. 

 

 

 

CISC RISC 

 

 

 

 
 

Greater 

Complexity 

 
Compiler 

 
Code 

Generation 
 

 

Greater 

Complexity 

 
Compiler 

 
Code 

Generation 
 

 
 

 

Figure 1.1 CISC vs. RISC. CISC 
emphasizes hardware 
complexity. RISC 
emphasizes compiler 
complexity. 

Processor Processor 
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 INSTRUCTION SeT fOR EMBeDDeD SYSTeMS 

The ARM instruction set differs from the pure RISC definition in several ways that 
make the ARM instruction set suitable for embedded applications: 

 
■ Variable cycle execution for certain instructions—Not every ARM instruction executes in 

a single cycle. For example, load-store-multiple instructions vary in the number of 
execution cycles depending upon the number of registers being transferred. The transfer 
can occur on sequential memory addresses, which increases performance since sequential 
memory accesses are often faster than random accesses. Code density is also improved since 
multiple register transfers are common operations at the start and end of functions. 

■ Inline barrel shifter leading to more complex instructions—The inline barrel shifter is a 
hardware component that preprocesses one of the input registers before it is used by an 
instruction. This expands the capability of many instructions to improve core 
performance and code density. We explain this feature in more detail in Chapters 2, 3,  and 
4. 

■ Thumb 16-bit instruction set—ARM enhanced the processor core by adding a second 
16-bit instruction set called Thumb that permits the ARM core to execute either 16- 
or 32-bit instructions. The 16-bit instructions improve code density by about 30% over 
32-bit fixed-length instructions. 

■ Conditional execution—An instruction is only executed when a specific condition has 
been satisfied. This feature improves performance and code density by reducing branch  
instructions. 

■ Enhanced instructions—The enhanced digital signal processor (DSP) instructions were 
added to the standard ARM instruction set to support fast 16 16-bit multiplier oper- ations 
and saturation. These instructions allow a faster-performing ARM processor in some 
cases to replace the traditional combinations of a processor plus a DSP. 

 
These additional features have made the ARM processor one of the most commonly 

used 32-bit embedded processor cores. Many of the top semiconductor companies around  
the world produce products based around the ARM processor. 

 
 

 
 
 



    Microcontrollers   Module -1  

 

AIT,Tumkur Dept of CSE  

 

Embedded SYSTEM  Hardware  

Embedded systems can control many different devices, from small sensors found on 
a production line, to the real-time control systems used on a NASA space probe. All 
these devices use a combination of software and hardware components. Each component 
is chosen for efficiency and, if applicable, is designed for future extension and expansion. 

 

Figure 1.2 shows a typical embedded device based on an ARM core. Each box represents  a 
feature or function. The lines connecting the boxes are the buses carrying data. We can 
separate the device into four main hardware components: 

 
The ARM processor controls the embedded device. Different versions of the ARM pro- 
cessor are available to suit the desired operating characteristics. An ARM processor 
comprises a core (the execution engine that processes instructions and manipulates data) 
plus the surrounding components that interface it with a bus. These components  can include 
memory management and caches. 

Controllers coordinate important functional blocks of the system. Two commonly found 
controllers are interrupt and memory controllers. 

The peripherals provide all the input-output capability external to the chip and are 

responsible for the uniqueness of the embedded device. 
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A bus is used to communicate between different parts of the device. 

 

ARM BUS TeCHNOLOGY 

Embedded systems use different bus technologies than those designed for x86 PCs. The most 
common PC bus technology, the Peripheral Component Interconnect (PCI) bus, connects 
such devices as video cards and hard disk controllers to the x86 processor bus. This type 
of technology is external or off-chip (i.e., the bus is designed to connect mechanically 
and electrically to devices external to the chip) and is built into the motherboard of a PC. 
In contrast, embedded devices use an on-chip bus that is internal to the chip and that 
allows different peripheral devices to be interconnected with an ARM core. 

There are two different classes of devices attached to the bus. The ARM processor core is a 
bus master—a logical device capable of initiating a data transfer with another device across 
the same bus. Peripherals tend to be bus slaves—logical devices capable only of responding 
to a transfer request from a bus master device. 
A bus has two architecture levels. The first is a physical level that covers the electrical 
characteristics and bus width (16, 32, or 64 bits). The second level deals with protocol—the 
logical rules that govern the communication between the processor and a peripheral. 
ARM is primarily a design company. It seldom implements the electrical characteristics of 
the bus, but it routinely specifies the bus protocol. 
 

AMBA BUS PROTOCOL 

The Advanced Microcontroller Bus Architecture (AMBA) was introduced in 1996 and 
has been widely adopted as the on-chip bus architecture used for ARM processors. The 
first AMBA buses introduced were the ARM System Bus (ASB) and the ARM Peripheral 
Bus (APB). Later ARM introduced another bus design, called the ARM High 
Performance Bus (AHB). Using AMBA, peripheral designers can reuse the same design 
on multiple projects. Because there are a large number of peripherals developed with an 
AMBA interface, hard- ware designers have a wide choice of tested and proven peripherals 
for use in a device. A peripheral can simply be bolted onto the on-chip bus without having 
to redesign an inter- face for each different processor architecture. This plug-and-play 

interface for hardware developers improves availability and time to market. 
AHB provides higher data throughput than ASB because it is based on a centralized 
multiplexed bus scheme rather than the ASB bidirectional bus design. This change allows 
the AHB bus to run at higher clock speeds and to be the first ARM bus to support widths 
of 64 and 128 bits. ARM has introduced two variations on the AHB bus: Multi-layer 
AHB and AHB-Lite. In contrast to the original AHB, which allows a single bus master 
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to be active on the bus at any time, the Multi-layer AHB bus allows multiple active bus 
masters. AHB-Lite is a subset of the AHB bus and it is limited to a single bus master. 
This bus was developed for designs that do not require the full features of the standard 

AHB bus. 
AHB and Multi-layer AHB support the same protocol for master and slave but have 
different interconnects. The new interconnects in Multi-layer AHB are good for systems 
with multiple processors. They permit operations to occur in parallel and allow for higher 
throughput rates. 

 

The example device shown in Figure 1.2 has three buses: an AHB bus for the high- 
performance peripherals, an APB bus for the slower peripherals, and a third bus for external  
peripherals, proprietary to this device. This external bus requires a specialized bridge to 
connect with the AHB bus. 

  

 MeMORY 

An embedded system has to have some form of memory to store and execute code. You 
have to compare price, performance, and power consumption when deciding upon specific  
memory characteristics, such as hierarchy, width, and type. If memory has to run twice 

as fast to maintain a desired bandwidth, then the memory power requirement may be higher. 

 Hierarchy 

All computer systems have memory arranged in some form of hierarchy. Figure 1.2 
shows a device that supports external off-chip memory. Internal to the processor there is an 
option of a cache (not shown in Figure 1.2) to improve memory performance. 

Figure 1.3 shows the memory trade-offs: the fastest memory cache is physically located 
nearer the ARM processor core and the slowest secondary memory is set further away. 
Generally the closer memory is to the processor core, the more it costs and the smaller 
its capacity. 

The cache is placed between main memory and the core. It is used to speed up data 
transfer between the processor and main memory. A cache provides an overall increase in  
performance but with a loss of predictable execution time. Although the cache increases the 
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Figure 1.3 Storage trade-offs. 

general perfomance of the system, it does not help real-time system response. Note that 

many small embedded systems do not require the performance benefits of a cache. 

The main memory is large—around 256 KB to 256 MB (or even greater), depending 
on the application—and is generally stored in separate chips. Load and store instructions 
access the main memory unless the values have been stored in the cache for fast access. 
Secondary storage is the largest and slowest form of memory. Hard disk drives and CD-
ROM drives are examples of secondary storage. These days secondary storage may vary 

from 600 MB to 60 GB. 

 Width 

The memory width is the number of bits the memory returns on each access—
typically 8, 16, 32, or 64 bits. The memory width has a direct effect on the overall 
performance and cost ratio. 

If you have an uncached system using 32-bit ARM instructions and 16-bit-wide 
memory chips, then the processor will have to make two memory fetches per instruction. 
Each fetch requires two 16-bit loads. This obviously has the effect of reducing system 
performance, but the benefit is that 16-bit memory is less expensive. 

In contrast, if the core executes 16-bit Thumb instructions, it will achieve better 

Cache 

Main 

memory 
Secondary 

storage 
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performance with a 16-bit memory. The higher performance is a result of the core 
making only a single fetch to memory to load an instruction. Hence, using Thumb 
instructions with 16-bit-wide memory devices provides both improved performance and 

reduced cost. 
Table 1.1 summarizes theoretical cycle times on an ARM processor using different 

memory width devices. 
Types 

There are many different types of memory. In this section we describe some of the 
more popular memory devices found in ARM-based embedded systems. 

Read-only memory (ROM) is the least flexible of all memory types because it contains 
an image that is permanently set at production time and cannot be reprogrammed. ROMs 
are used in high-volume devices that require no updates or corrections. Many devices 
also use a ROM to hold boot code. 

 
 

Table 1.1 Fetching instructions from memory. 

 

Instructi

on size 

8-bit 

memory 

16-bit 

memory 

32-bit 

memory 
ARM 
32-bit 

4 cycles 2 cycles 1 cycle 

Thumb 
16-bit 

2 cycles 1 cycle 1 cycle 

 

Flash ROM can be written to as well as read, but it is slow to write so you shouldn’t 
use it for holding dynamic data. Its main use is for holding the device firmware or storing 
long- term data that needs to be preserved after power is off. The erasing and writing of flash 
ROM are completely software controlled with no additional hardware circuity required, 
which reduces the manufacturing costs. Flash ROM has become the most popular of the 
read-only memory types and is currently being used as an alternative for mass or secondary 
storage. 

Dynamic random access memory (DRAM) is the most commonly used RAM for 
devices. It has the lowest cost per megabyte compared with other types of RAM. DRAM is 
dynamic— it needs to have its storage cells refreshed and given a new electronic charge 

every few milliseconds, so you need to set up a DRAM controller before using the 
memory. 

Static random access memory (SRAM) is faster than the more traditional DRAM, 
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but requires more silicon area. SRAM is static—the RAM does not require refreshing. 
The access time for SRAM is considerably shorter than the equivalent DRAM because 
SRAM does not require a pause between data accesses. Because of its higher cost, it is used 

mostly for smaller high-speed tasks, such as fast memory and caches. 
Synchronous dynamic random access memory (SDRAM) is one of many 

subcategories of DRAM. It can run at much higher clock speeds than conventional 
memory. SDRAM synchronizes itself with the processor bus because it is clocked. 
Internally the data is fetched from memory cells, pipelined, and finally brought out on the 
bus in a burst. The old-style DRAM is asynchronous, so does not burst as efficiently as 
SDRAM. 

 

 

 PeRIPHeRALS 

Embedded systems that interact with the outside world need some form of peripheral 
device. A peripheral device performs input and output functions for the chip by connecting  
to other devices or sensors that are off-chip. Each peripheral device usually performs a single 
function and may reside on-chip. Peripherals range from a simple serial communication 
device to a more complex 802.11 wireless device. 

All ARM peripherals are memory mapped—the programming interface is a set of 
memory-addressed registers. The address of these registers is an offset from a specific 
peripheral base address. 

Controllers are specialized peripherals that implement higher levels of functionality 
within an embedded system. Two important types of controllers are memory controllers 
and interrupt controllers. 

 

 Memory Controllers 

 

Memory controllers connect different types of memory to the processor bus. On power-up 
a memory controller is configured in hardware to allow certain memory devices to be active.  
These memory devices allow the initialization code to be executed. Some memory devices  
must be set up by software; for example, when using DRAM, you first have to set up 
the memory timings and refresh rate before it can be accessed. 
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Embedded system Software  

 An embedded system needs software to drive it. Figure 1.4 shows four typical software 
components required to control an embedded device. Each software component in the 
stack uses a higher level of abstraction to separate the code from the hardware device. 

The initialization code is the first code executed on the board and is specific to a particular 
target or group of targets. It sets up the minimum parts of the board before handing control  

over to the operating system. 

 

 

 

Figure 1.4 Software abstraction layers executing on hardware. 

 

The operating system provides an infrastructure to control applications and manage 
hardware system resources. Many embedded systems do not require a full operating system 
but merely a simple task scheduler that is either event or poll driven. 

The device drivers are the third component shown in Figure 1.4. They provide a 
consistent software interface to the peripherals on the hardware device. 

Finally, an application performs one of the tasks required for a device. For example, 
a mobile phone might have a diary application. There may be multiple applications running  
on the same device, controlled by the operating system. 

The software components can run from ROM or RAM. ROM code that is fixed on 
the device (for example, the initialization code) is called firmware. 

 
 

 

1.4.1 INITIALIzATION (BOOT) CODe 
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Device drivers 

Hardware device 
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Application 



    Microcontrollers   Module -1  

 

AIT,Tumkur Dept of CSE  

Initialization code (or boot code) takes the processor from the reset state to a state where the 
operating system can run. It usually configures the memory controller and processor caches  
and initializes some devices. In a simple system the operating system might be replaced  

by a simple scheduler or debug monitor. 
The initialization code handles a number of administrative tasks prior to handing control  

over to an operating system image. We can group these different tasks into three phases: 
initial hardware configuration, diagnostics, and booting. 

Initial hardware configuration involves setting up the target platform so it can boot 
an image. Although the target platform itself comes up in a standard configuration, this 
configuration normally requires modification to satisfy the requirements of the booted 
image. For example, the memory system normally requires reorganization of the 
memory map, as shown in Example 1.1. 

Diagnostics are often embedded in the initialization code. Diagnostic code tests the 
system by exercising the hardware target to check if the target is in working order. It 
also tracks down standard system-related issues. This type of testing is important for 
manu- facturing since it occurs after the software product is complete. The primary 
purpose of diagnostic code is fault identification and isolation. 

Booting involves loading an image and handing control over to that image. The boot 
process itself can be complicated if the system must boot different operating systems or 
different versions of the same operating system. 

Booting an image is the final phase, but first you must load the image. Loading an 
image involves anything from copying an entire program including code and data into 

RAM, to just copying a data area containing volatile variables into RAM. Once 
booted, the system hands over control by modifying the program counter to point into 
the start of the image. 

Sometimes, to reduce the image size, an image is compressed. The image is then 
decompressed either when it is loaded or when control is handed over to it. 

Ex: 1.1 Initializing or organizing memory is an important part of the initialization 
code because many operating systems expect a known memory layout before they can 
start 

Figure 1.5 shows memory before and after reorganization. It is common for ARM-based 
embedded systems to provide for memory remapping because it allows the system to start  
the initialization code from ROM at power-up. The initialization code then redefines or 
remaps the memory map to place RAM at address 0x00000000—an important step because 
then the exception vector table can be in RAM and thus can be reprogrammed. We will 
discuss the vector table in more detail in Section 2.4.  
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 OpeRATING SYSTeM 

The initialization process prepares the hardware for an operating system to take 
control. An operating system organizes the system resources: the peripherals, 
memory, and processing time. With an operating system controlling these resources, 
they can be efficiently used by different applications running within the operating system 
environment. ARM processors support over 50 operating systems. We can divide 
operating systems into two main categories: real-time operating systems (RTOSs) 
and platform operating 
systems. 

RTOSs provide guaranteed response times to events. Different operating systems have  
different amounts of control over the system response time. A hard real-time 
application requires a guaranteed response to work at all. In contrast, a soft real-time 
application requires a good response time, but the performance degrades more gracefully if 
the response time overruns. Systems running an RTOS generally do not have secondary 
storage. 

Platform operating systems require a memory management unit to manage large, non- 
real-time applications and tend to have secondary storage. The Linux operating system 
is a typical example of a platform operating system. 
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These two categories of operating system are not mutually exclusive: there are operat - 
ing systems that use an ARM core with a memory management unit and have real-time 
characteristics. ARM has developed a set of processor cores that specifically target each 

category. 

 

 AppLICATIONS 

The operating system schedules applications—code dedicated to handling a particular task. 
An application implements a processing task; the operating system controls the environ- 
ment. An embedded system can have one active application or several applications running  
simultaneously. 

ARM processors are found in numerous market segments, including networking, 
auto- motive, mobile and consumer devices, mass storage, and imaging. Within each 
segment ARM processors can be found in multiple applications. 

For example, the ARM processor is found in networking applications like home 
gateways, DSL modems for high-speed Internet communication, and 802.11 wireless 
communication. The mobile device segment is the largest application area for ARM 
pro- cessors because of mobile phones. ARM processors are also found in mass storage 
devices such as hard drives and imaging products such as inkjet printers—applications that 
are cost sensitive and high volume. 

In contrast, ARM processors are not found in applications that require leading-edge 
high performance. Because these applications tend to be low volume and high cost, 
ARM has decided not to focus designs on these types of applications. 
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Chapter 2 

ARM PROCESSOR FUNDAMENTALS 

 

 

A programmer can think of an ARM core as functional units connected by data 
buses, as shown in Figure 2.1, where, the arrows represent the flow of data, the lines represent 
the buses, and the boxes represent either an operation unit or a storage area. The figure shows  
not only the flow of data but also the abstract components that make up an ARM core. 

Data enters the processor core through the Data bus. The data may be an instruction to 
execute or a data item. Figure 2.1 shows a Von Neumann implementation of the ARM— data 
items and instructions share the same bus. In contrast, Harvard implementations of the ARM 
use two different buses. 

The instruction decoder translates instructions before they are executed. Each 
instruction executed belongs to a particular instruction set. 

The ARM processor, like all RISC processors, uses a load-store architecture. This 
means it has two instruction types for transferring data in and out of the processor: load 
instructions copy data from memory to registers in the core, and conversely the store 
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Address 

 

Figure 2.1 ARM core dataflow model. 
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instructions copy data from registers to memory. There are no data processing 

instructions that directly manipulate data in memory. Thus, data processing is carried 
out solely in registers. 

Data items are placed in the register file—a storage bank made up of 32-bit 
registers. Since the ARM core is a 32-bit processor, most instructions treat the registers 
as holding signed or unsigned 32-bit values. The sign extend hardware converts signed 8-bit 
and 16-bit numbers to 32-bit values as they are read from memory and placed in a 
register. 

ARM instructions typically have two source registers, Rn and Rm, and a single 
result or destination register, Rd. Source operands are read from the register file using 
the internal buses A and B, respectively. 

The ALU (arithmetic logic unit) or MAC (multiply-accumulate unit) takes the 
regis- ter values Rn and Rm from the A and B buses and computes a result. Data 
processing instructions write the result in Rd directly to the register file. Load and store 
instructions use the ALU to generate an address to be held in the address register and 
broadcast on the Address bus. 

 

One important feature of the ARM is that register Rm alternatively can be preprocessed 
in the barrel shifter before it enters the ALU. Together the barrel shifter and ALU can 
calculate a wide range of expressions and addresses. 

After passing through the functional units, the result in Rd is written back to the register 
file using the Result bus. For load and store instructions the incrementer updates the address 
register before the core reads or writes the next register value from or to the next sequential 
memory location. The processor continues executing instructions until an exception or 
interrupt changes the normal execution flow. 

Now that you have an overview of the processor core we’ll take a more detailed 
look at some of the key components of the processor: the registers, the current program status 
register (cpsr), and the pipeline. 

 
2.1 REGISTERS 

General-purpose registers hold either data or an address. They are identified with 
the letter r prefixed to the register number. For example, register 4 is given the label r4. 
Figure 2.2 shows the active registers available in user mode—a protected mode normally 

 

 

 
 
 

 
r
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Figure 2.2 Registers available in user mode. 

used when executing applications. The processor can operate in seven 
different modes, which we will introduce shortly. All the registers shown are 32 bits in 
size. 

There are up to 18 active registers: 16 data registers and 2 processor status 
registers. The data registers are visible to the programmer as r0 to r15. 

The ARM processor has three registers assigned to a particular task or special 
function: r13, r14, and r15. They are frequently given different labels to differentiate them 
from the other registers. 

In Figure 2.2, the shaded registers identify the assigned special-purpose registers: 
 
Register r13 is traditionally used as the stack pointer (sp) and stores the head of the 
stack in the current processor mode. 

Register r14 is called the link register (lr) and is where the core puts the return 

 

cpsr 
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address whenever it calls a subroutine. 

Register r15 is the program counter (pc) and contains the address of the next 
instruction to be fetched by the processor. 
 
Depending upon the context, registers r13 and r14 can also be used as general-

purpose registers, which can be particularly useful since these registers are banked during a 
processor mode change. However, it is dangerous to use r13 as a general register when the 
processor is running any form of operating system because operating systems often assume 
that r13 always points to a valid stack frame. 

In ARM state the registers r0 to r13 are orthogonal—any instruction that you can 
apply to r0 you can equally well apply to any of the other registers. However, there are 
instructions that treat r14 and r15 in a special way. 

In addition to the 16 data registers, there are two program status registers: cpsr and spsr 
(the current and saved program status registers, respectively). 
The register file contains all the registers available to a programmer. Which 

registers are visible to the programmer depend upon the current mode of the processor. 
2

2 CPSR  

 

The ARM core uses the cpsr to monitor and control internal operations. The 
cpsr is a dedicated 32-bit register and resides in the register file. Figure 2.3 shows the 
basic layout of a generic program status register. Note that the shaded parts are 
reserved for future expansion. 

The cpsr is divided into four fields, each 8 bits wide: flags, status, extension, and 
control. In current designs the extension and status fields are reserved for future use. 
The control field contains the processor mode, state, and interrupt mask bits. The flags 
field contains the condition flags. 

Some ARM processor cores have extra bits allocated. For example, the J bit, 
which can be found in the flags field, is only available on Jazelle-enabled processors, 
which execute 
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 PROCeSSOR MODeS 

The processor mode determines which registers are active and the access rights to the 
cpsr register itself. Each processor mode is either privileged or nonprivileged: A privileged mode 
allows full read-write access to the cpsr. Conversely, a nonprivileged mode only allows read 
access to the control field in the cpsr but still allows read-write access to the condition flags. 
There are seven processor modes in total: six privileged modes (abort, fast interrupt 
request, interrupt request, supervisor, system, and undefined) and one nonprivileged mode 

The processor enters abort mode when there is a failed attempt to access memory. Fast 
interrupt request and interrupt request modes correspond to the two interrupt levels available on 
the ARM processor. Supervisor mode is the mode that the processor is in after reset and is 
generally the mode that an operating system kernel operates in. System mode is a special version 
of user mode that allows full read-write access to the cpsr. Undefined mode is used when the 
processor encounters an instruction that is undefined or not supported by the 
implementation. User mode is used for programs and applications. 

 BANKeD ReGISTeRS 

Figure 2.4 shows all 37 registers in the register file. Of those, 20 registers are hidden 
from a program at different times. These registers are called banked registers and are identified 
by the shading in the diagram. They are available only when the processor is in a particular  
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Figure 2.4 Complete ARM register set. 

 
mode; for example, abort mode has banked registers r13_abt, r14_abt and 

spsr_abt. Banked registers of a particular mode are denoted by an underline character post-
fixed to the mode mnemonic or _mode. 

Every processor mode except user mode can change mode by writing directly 
to the mode bits of the cpsr. All processor modes except system mode have a set of 
associated banked registers that are a subset of the main 16 registers. A banked register 
maps one-to- one onto a user mode register. If you change processor mode, a banked 
register from the new mode will replace an existing register. 

For example, when the processor is in the interrupt request mode, the instructions 
you execute still access registers named r13 and r14. However, these registers are the 
banked registers r13_irq and r14_irq. The user mode registers r13_usr and r14_usr are not 
affected by the instruction referencing these registers. A program still has normal access to 
the other registers r0 to r12. 

The processor mode can be changed by a program that writes directly to the 
cpsr (the processor core has to be in privileged mode) or by hardware when the core 
responds to 

 

cpsr 

spsr_ fiq spsr_irq spsr_svc spsr_undef spsr_abt 
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Figure 2.5 Changing mode on an exception. 

 
 
an exception or interrupt. The following exceptions and interrupts cause a mode 

change: reset, interrupt request, fast interrupt request, software interrupt, data abort, prefetch 
abort, and undefined instruction. Exceptions and interrupts suspend the normal execution of 
sequential instructions and jump to a specific location. 

Figure 2.5 illustrates what happens when an interrupt forces a mode change. The figure  
shows the core changing from user mode to interrupt request mode, which happens when an 
interrupt request occurs due to an external device raising an interrupt to the processor core.  This 
change causes user registers r13 and r14 to be banked. The user registers are replaced with 
registers r13_irq and r14_irq, respectively. Note r14_irq contains the return address and 
r13_irq contains the stack pointer for interrupt request mode. 

Figure 2.5 also shows a new register appearing in interrupt request mode: the 
saved program status register (spsr), which stores the previous mode’s cpsr. You can see in 
the diagram the cpsr being copied into spsr_irq. To return back to user mode, a special return 
instruction is used that instructs the core to restore the original cpsr from the spsr_irq and 
bank in the user registers r13 and r14. Note that the spsr can only be modified and read in a 

r14_irq 

r13_irq 

r0 

r1 

r2 

r3 

r4 

r5 

r6 

r7 

r8 

r9 

r10 

r11 

r12 

r13 sp 

r14 lr 

r15 pc 

 

 

cpsr 

spsr_irq 



2.2 Current Program Status Register 27 
 

AIT,Tumkur Dept of CSE  

privileged mode. There is no spsr available in user mode. 
 
 

 
T

able 2.1 
Processor 

mode. 
 

 Mode Abbreviat
ion 

Privileg
ed 

Mo
de[4:0] 

 Abort abt yes 10
111 

 Fast 
interrupt request 

fiq yes 10
001 

 Interrupt 
request 

irq yes 10
010 

 Supervisor svc yes 10
011 

 System sys yes 11
111 

 Undefined und yes 11
011 

 User usr no 10
000 

 
 

Another important feature to note is that the cpsr is not copied into the spsr 
when a mode change is forced due to a program writing directly to the cpsr. The saving of 
the cpsr only occurs when an exception or interrupt is raised. 

Figure 2.3 shows that the current active processor mode occupies the five least 
significant bits of the cpsr. When power is applied to the core, it starts in supervisor 
mode, which is privileged. Starting in a privileged mode is useful since initialization code can 
use full access to the cpsr to set up the stacks for each of the other modes. 

Table 2.1 lists the various modes and the associated binary patterns. The last 
column of the table gives the bit patterns that represent each of the processor modes in the 
cpsr. 

 

 STATe AND INSTRUCTION SeTS 

The state of the core determines which instruction set is being executed. There 
are three instruction sets: ARM, Thumb, and Jazelle. The ARM instruction set is only 
active when the processor is in ARM state. Similarly the Thumb instruction set is only 
active when the processor is in Thumb state. Once in Thumb state the processor is 
executing purely Thumb 16-bit instructions. You cannot intermingle sequential ARM, 
Thumb, and Jazelle instructions. 

The Jazelle J and Thumb T bits in the cpsr reflect the state of the processor. 
When both J and T bits are 0, the processor is in ARM state and executes ARM 
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instructions. This is the case when power is applied to the processor. When the T bit is 1, 
then the processor is in Thumb state. To change states the core executes a specialized 
branch instruction. Table 2.2 compares the ARM and Thumb instruction set features. 

The ARM designers introduced a third instruction set called Jazelle. Jazelle 
executes 8-bit instructions and is a hybrid mix of software and hardware designed to 
speed up the execution of Java bytecodes. 

To execute Java bytecodes, you require the Jazelle technology plus a specially 
modified version of the Java virtual machine. It is important to note that the hardware 
portion of Jazelle only supports a subset of the Java bytecodes; the rest are emulated in 
software. 

 
 

Table 2.2 ARM and Thumb instruction set features. 

 

ARM (cpsr T = 0) Thumb (cpsr T = 1) 
 

Instruction size 32-bit 16-bit 
Core instructions 58 30 
Conditional executiona most only branch instructions 
Data processing 

instructions 
access to barrel shifter 

and ALU 
separate barrel 

shifter and ALU 
instructions 
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Program status register read-write in privileged mode no direct access 
Register usage 15 general-purpose registers 8 general-purpose registers 
+pc +7 high registers +pc 

a See Section 2.2.6. 

 
Table 2.3 Jazelle instruction set features. 

 

Jazelle (cpsr T = 0, J = 1) 
 

Instruction size 8-bit 
Core instructions Over 60% of the Java bytecodes are implemented in 

hardware; the rest of the codes are implemented in software. 
 

The Jazelle instruction set is a closed instruction set and is not openly available. 
Table 2.3 gives the Jazelle instruction set features. 

 

 INTeRRUPT MASKS 

Interrupt masks are used to stop specific interrupt requests from interrupting the 
processor. There are two interrupt request levels available on the ARM processor core—
interrupt request (IRQ) and fast interrupt request (FIQ). 

The cpsr has two interrupt mask bits, 7 and 6 (or I and F ), which control the masking 
of IRQ and FIQ, respectively. The I bit masks IRQ when set to binary 1, and similarly the F bit 
masks FIQ when set to binary 1. 

 

 CONDITION FLAGS 

Condition flags are updated by comparisons and the result of ALU operations that 
specify the S instruction suffix. For example, if a SUBS subtract instruction results in a register 
value of zero, then the Z flag in the cpsr is set. This particular subtract instruction specifically 
updates the cpsr. 

 
 

Table 2.4 Condition flags. 
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F
lag 

Flag 
name 

Set when 

Q Satura
tion 

the result causes an overflow and/or 
saturation 

V oVerfl
ow 

the result causes a signed overflow 

C Carry the result causes an unsigned carry 
Z Zero the result is zero, frequently used to 

indicate equality 
N Negati

ve 
bit 31 of the result is a binary 1 

 

With processor cores that include the DSP extensions, the Q bit indicates if an 
overflow or saturation has occurred in an enhanced DSP instruction. The flag is “sticky” in 
the sense that the hardware only sets this flag. To clear the flag you need to write to the 
cpsr directly. 

In Jazelle-enabled processors, the J bit reflects the state of the core; if it is set, the 
core is in Jazelle state. The J bit is not generally usable and is only available on some processor 
cores. To take advantage of Jazelle, extra software has to be licensed from both ARM Limited 
and Sun Microsystems. 

Most ARM instructions can be executed conditionally on the value of the 
condition flags. Table 2.4 lists the condition flags and a short description on what causes 
them to be set. These flags are located in the most significant bits in the cpsr. These bits 
are used for conditional execution. 

Figure 2.6 shows a typical value for the cpsr with both DSP extensions and 
Jazelle. In this book we use a notation that presents the cpsr data in a more human 
readable form. When a bit is a binary 1 we use a capital letter; when a bit is a binary 0, we 
use a lowercase letter. For the condition flags a capital letter shows that the flag has been 
set. For interrupts a capital letter shows that an interrupt is disabled. 

In the cpsr example shown in Figure 2.6, the C flag is the only condition flag set. 
The rest nzvq flags are all clear. The processor is in ARM state because neither the Jazelle j or 
Thumb t bits are set. The IRQ interrupts are enabled, and FIQ interrupts are disabled. 
Finally, you 

 

 
 

31 30 29 28 27 24 7 6   5 4 0 
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0  0  1  0  0   

 

0 

  
nzCvq j iF   t SVC 

 

Figure 2.6 Example: cpsr = nzCvqjiFt_SVC. 

 
Table 2.5

 Condition 
mnemonics. 

 

Mnemoni
c 

Name Conditio
n flags 

EQ equal Z 
NE not equal z 
CS HS carry set/unsigned higher 

or same 
C 

CC LO carry clear/unsigned 
lower 

c 

MI minus/negative N 
PL plus/positive or zero n 
VS overflow V 
VC no overflow v 
HI unsigned higher zC 
LS unsigned lower or same Z or c 
GE signed greater than or 

equal 
NV or 

nv 
LT signed less than Nv or 

nV 
GT signed greater than NzV or 

nzv 
LE signed less than or equal Z or Nv 

or nV 
AL always (unconditional) ignored 

 
 

can see from the figure the processor is in supervisor (SVC) mode since the 
mode[4:0] is equal to binary 10011. 

 

  

 CONDITIONAL ExeCUTION 

 

10011 

 

0 

 

1 
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Conditional execution controls whether or not the core will execute an 
instruction. Most instructions have a condition attribute that determines if the core will 
execute it based on the setting of the condition flags. Prior to execution, the processor compares 
the condition attribute with the condition flags in the cpsr. If they match, then the instruction 
is executed; otherwise the instruction is ignored. 

The condition attribute is postfixed to the instruction mnemonic, which is encoded 
into the instruction. Table 2.5 lists the conditional execution code mnemonics. When a 
condition mnemonic is not present, the default behavior is to set it to always (AL) execute. 

  

 PIPELINE 

A pipeline is the mechanism a RISC processor uses to execute instructions. Using a 
pipeline speeds up execution by fetching the next instruction while other instructions are 
being decoded and executed. One way to view the pipeline is to think of it as an automobile 
assembly line, with each stage carrying out a particular task to manufacture the vehicle. 

 

 

 

Figure 2.7 ARM7 Three-stage pipeline. 

Figure 2.7 shows a three-stage pipeline: 
 
■ Fetch loads an instruction from memory. 

■ Decode identifies the instruction to be executed. 

■ Execute processes the instruction and writes the result back to a register. 

 
Figure 2.8 illustrates the pipeline using a simple example. It shows a sequence of 

three instructions being fetched, decoded, and executed by the processor. Each instruction 
takes a single cycle to complete after the pipeline is filled. 

The three instructions are placed into the pipeline sequentially. In the first 
cycle the core fetches the ADD instruction from memory. In the second cycle the core 
fetches the SUB instruction and decodes the ADD instruction. In the third cycle, both the 
SUB and ADD instructions are moved along the pipeline. The ADD instruction is executed, 
the SUB instruction is decoded, and the CMP instruction is fetched. This procedure is 
called filling the pipeline. The pipeline allows the core to execute an instruction every 
cycle. 

As the pipeline length increases, the amount of work done at each stage is 
reduced, which allows the processor to attain a higher operating frequency. This in turn 
increases the performance. The system latency also increases because it takes more cycles to 

Fetch Decode Execute 
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fill the pipeline before the core can execute an instruction. The increased pipeline length also 
means there can be data dependency between certain stages. You can write code to 
reduce this dependency by using instruction scheduling (for more information on instruction 
scheduling take a look at Chapter 6). 

 

 

 

 
Time Cycle 1 

 

Cycle 2 

 

Cycle 3 

 

 

Figure 2.8 Pipelined instruction sequence. 

Fetch Decode Execute 

ADD 

 ADD 

CMP SUB ADD 
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Figure 2.9 ARM9 five-stage pipeline. 

 
 

 
 

Figure 2.10  ARM10 six-stage pipeline. 

 

 
The pipeline design for each ARM family differs. For example, The ARM9 core increases 

the pipeline length to five stages, as shown in Figure 2.9. The ARM9 adds a memory and 
writeback stage, which allows the ARM9 to process on average 1.1 Dhrystone MIPS per 
MHz—an increase in instruction throughput by around 13% compared with an ARM7. The 
maximum core frequency attainable using an ARM9 is also higher. 

The ARM10 increases the pipeline length still further by adding a sixth stage, as 
shown in Figure 2.10. The ARM10 can process on average 1.3 Dhrystone MIPS per MHz, 
about 34% more throughput than an ARM7 processor core, but again at a higher latency cost. 

Even though the ARM9 and ARM10 pipelines are different, they still use the same 
pipeline executing characteristics as an ARM7. Code written for the ARM7 will execute on an 
ARM9 or ARM10. 

 
 
 
 
 
 
 
 
 

Fetch Decode Execute Memory Write 

Fetch Issue Decode Execute Memory Write 
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2.3.1 PIPeLINe  ExeCUTING  CHARACTeRISTICS 

The ARM pipeline has not processed an instruction until it passes completely 
through the execute stage. For example, an ARM7 pipeline (with three stages) has executed 
an instruction only when the fourth instruction is fetched. 
Figure 2.11 shows an instruction sequence on an ARM7 pipeline. The MSR instruction is used 
to enable IRQ interrupts, which only occurs once the MSR instruction completes the execute 
stage of the pipeline. It clears the I bit in the cpsr to enable the IRQ inter- rupts. Once the ADD 
instruction enters the execute stage of the pipeline, IRQ interrupts are enabled. 

Figure 2.12 illustrates the use of the pipeline and the program counter pc. In the 
execute stage, the pc always points to the address of the instruction plus 8 bytes. In other 
words, the pc always points to the address of the instruction being executed plus two 
instructions ahead. This is important when the pc is used for calculating a relative offset 
and is an 

 

exception ,interrupt and vector table   

When an exception or interrupt occurs, the processor sets the pc to a specific 
memory address. The address is within a special address range called the vector table. The 
entries in the vector table are instructions that branch to specific routines designed to handle 
a particular exception or interrupt. 

The memory map address 0x00000000 is reserved for the vector table, a set of 32-bit 
words. On some processors the vector table can be optionally located at a higher address in 
memory (starting at the offset 0xffff0000). Operating systems such as Linux and 
Microsoft’s embedded products can take advantage of this feature. 

When an exception or interrupt occurs, the processor suspends normal execution 
and starts loading instructions from the exception vector table (see Table 2.6). Each vector table  
entry contains a form of branch instruction pointing to the start of a specific routine: 

 
Reset vector is the location of the first instruction executed by the processor when 
power is applied. This instruction branches to the initialization code. 

Undefined instruction vector is used when the processor cannot decode an instruction. 

Software interrupt vector is called when you execute a SWI instruction. The SWI 
instruction is frequently used as the mechanism to invoke an operating system routine. 

Prefetch abort vector occurs when the processor attempts to fetch an instruction from 
an address without the correct access permissions. The actual abort occurs in the 
decode stage. 

Data abort vector is similar to a prefetch abort but is raised when an instruction 
attempts to access data memory without the correct access permissions. 

Interrupt request vector is used by external hardware to interrupt the normal execution 
flow of the processor. It can only be raised if IRQs are not masked in the cpsr. 



2.4 Exceptions, Interrupts, and the Vector Table 47 
 

AIT,Tumkur Dept of CSE  

 
 

Table 2.6 The vector 
table. 

 

Exception/interrupt Shorth
and 

Address High 
address 

Reset RESET 0x0000
0000 

0xf
fff0000 

Undefined 
instruction 

UNDE
F 

0x0000
0004 

0xf
fff0004 

Software interrupt SWI 0x0000
0008 

0xf
fff0008 

Prefetch abort PABT 0x0000
000c 

0xf
fff000c 

Data 
abort 

DABT 0x0000
0010 

0xf
fff0010 

Reserved — 0x0000
0014 

0xf
fff0014 

Interrupt request IRQ 0x0000
0018 

0xf
fff0018 

Fast interrupt 
request 

FIQ 0x0000
001c 

0xf
fff001c 

 
 

Fast interrupt request vector is similar to the interrupt request but is reserved for 
hardware requiring faster response times. It can only be raised if FIQs are not 
masked in the cpsr.
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Core extension  

The hardware extensions covered in this section are standard components placed 
next to the ARM core. They improve performance, manage resources, and provide extra 
functionality and are designed to provide flexibility in handling particular applications. Each 
ARM family has different extensions available. 

There are three hardware extensions ARM wraps around the core: cache and 
tightly coupled memory, memory management, and the coprocessor interface. 

 

 CACHe AND TIGHTLY COUPLeD MeMORY 

The cache is a block of fast memory placed between main memory and the core. It 
allows for more efficient fetches from some memory types. With a cache the processor 
core can run for the majority of the time without having to wait for data from slow 
external memory. Most ARM-based embedded systems use a single-level cache internal 
to the processor. Of course, many small embedded systems do not require the 
performance gains that a cache brings. 

ARM has two forms of cache. The first is found attached to the Von Neumann–
style cores. It combines both data and instruction into a single unified cache, as shown 
in Figure 2.13. For simplicity, we have called the glue logic that connects the memory 
system to the AMBA bus logic and control. 

 

 
 
On-chip AMBA bus 

 

Figure 2.13  A simplified Von Neumann architecture with cache. 
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On-chip AMBA bus 

 

Figure 2.14 A simplified Harvard architecture with TCMs. 

 
By contrast, the second form, attached to the Harvard-style cores, has separate caches 

for data and instruction. 
A cache provides an overall increase in performance but at the expense of 

predictable execution. But for real-time systems it is paramount that code execution is 
deterministic— the time taken for loading and storing instructions or data must be 
predictable. This is achieved using a form of memory called tightly coupled memory (TCM). 
TCM is fast SRAM located close to the core and guarantees the clock cycles required to fetch 
instructions or data—critical for real-time algorithms requiring deterministic behavior. TCMs 
appear as memory in the address map and can be accessed as fast memory. An example of a 
processor with TCMs is shown in Figure 2.14. 

By combining both technologies, ARM processors can have both improved performance 
and predictable real-time response. Figure 2.15 shows an example core with a combination of 
caches and TCMs. 

 MeMORY MANAGeMeNT 

Embedded systems often use multiple memory devices. It is usually necessary to 
have a method to help organize these devices and protect the system from applications trying 
to make inappropriate accesses to hardware. This is achieved with the assistance of memory 
management hardware. 

ARM cores have three different types of memory management hardware—no 
extensions providing no protection, a memory protection unit (MPU) providing limited 
protection, and a memory management unit (MMU) providing full protection: 

 
Nonprotected memory is fixed and provides very little flexibility. It is normally used 
for small, simple embedded systems that require no protection from rogue 
applications. 
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On-chip AMBA bus 

 

Figure 2.15  A simplified Harvard architecture with caches and TCMs. 
 
MPUs employ a simple system that uses a limited number of memory regions. 
These regions are controlled with a set of special coprocessor registers, and 
each region is defined with specific access permissions. This type of memory 
management is used for systems that require memory protection but don’t 
have a complex memory map. The MPU is explained in Chapter 13. 

MMUs are the most comprehensive memory management hardware available 
on the ARM. The MMU uses a set of translation tables to provide fine-grained 
control over memory. These tables are stored in main memory and provide a 
virtual-to-physical address map as well as access permissions. MMUs are 
designed for more sophisti- cated platform operating systems that support 
multitasking. The MMU is explained in Chapter 14. 

 

 

 

 

 

 

 

 

 

 COPROCeSSORS 

Coprocessors can be attached to the ARM processor. A coprocessor extends the 
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processing features of a core by extending the instruction set or by providing 
configuration reg- isters. More than one coprocessor can be added to the ARM core via 
the coprocessor interface. 

The coprocessor can be accessed through a group of dedicated ARM 
instructions that provide a load-store type interface. Consider, for example, coprocessor 
15: The ARM processor uses coprocessor 15 registers to control the cache, TCMs, and 
memory management. 

The coprocessor can also extend the instruction set by providing a specialized 
group of new instructions. For example, there are a set of specialized instructions 
that can be added to the standard ARM instruction set to process vector floating-point 
(VFP) operations. 

These new instructions are processed in the decode stage of the ARM pipeline. If 
the decode stage sees a coprocessor instruction, then it offers it to the relevant coprocessor. But 
if the coprocessor is not present or doesn’t recognize the instruction, then the ARM takes an 
undefined instruction exception, which allows you to emulate the behavior of the  coprocessor in 
software.

  
 

  


