
Slide No:L1-1

History of Database Systems

• 1950s and early 1960s:

– Data processing using magnetic tapes for storage

• Tapes provide only sequential access

– Punched cards for input

• Late 1960s and 1970s:

– Hard disks allow direct access to data

– Network and hierarchical data models in widespread

use

– Ted Codd defines the relational data model

• Would win the ACM Turing Award for this work

• IBM Research begins System R prototype

• UC Berkeley begins Ingres prototype

– High-performance (for the era) transaction processing

Slide No:L1-2

Magnetic tape unit Magnetic tape Hard disk

Slide No:L1-3

History (cont.)
• 1980s:

– Research relational prototypes evolve into commercial
systems

• SQL becomes industry standard

– Parallel and distributed database systems

– Object-oriented database systems

• 1990s:

– Large decision support and data-mining applications

– Large multi-terabyte data warehouses

– Emergence of Web commerce

• 2000s:

– XML and XQuery standards

– Automated database administration

– Increasing use of highly parallel database systems

– Web-scale distributed data storage systems

Slide No:L1-4

Slide No:L1-5

Slide No:L1-6

Slide No:L1-7

Slide No:L1-8

Slide No:L1-9

Slide No:L1-10

Slide No:L2-1

Database Design

• Conceptual design: (ER Model is used at this stage.)

– What are the entities and relationships in the

enterprise?

– What information about these entities and

relationships should we store in the database?

– What are the integrity constraints or business rules

that hold?

– A database `schema’ in the ER Model can be

represented pictorially (ER diagrams).

– Can map an ER diagram into a relational schema.

Slide No:L2-2

Modeling
• A database can be modeled as:

– a collection of entities,

– relationship among entities.

• An entity is an object that exists and is

distinguishable from other objects.

– Example: specific person, company, event, plant

• Entities have attributes

– Example: people have names and addresses

• An entity set is a set of entities of the same type

that share the same properties.

– Example: set of all persons, companies, trees,

holidays

Slide No:L2-3

Entity Sets customer and loan
customer_id customer_ customer_ customer_ loan_ amount

name street city number

Slide No:L2-4

Attributes
• An entity is represented by a set of attributes, that is

descriptive properties possessed by all members of an

entity set.

• Domain – the set of permitted values for each

attribute

• Attribute types:

– Simple and composite attributes.

– Single-valued and multi-valued attributes

• Example: multivalued attribute: phone_numbers

– Derived attributes

• Can be computed from other attributes

• Example: age, given date_of_birth

Example:

customer = (customer_id, customer_name,
customer_street, customer_city)

loan = (loan_number, amount)

Slide No:L2-5

Composite Attributes

Slide No:L2-6

Mapping Cardinality Constraints

• Express the number of entities to which another

entity can be associated via a relationship set.

• Most useful in describing binary relationship sets.

• For a binary relationship set the mapping

cardinality must be one of the following types:

– One to one

– One to many

– Many to one

– Many to many

Slide No:L2-7

Mapping Cardinalities

One to one One to many

Note: Some elements in A and B may not be mapped to any

elements in the other set

Slide No:L2-8

Mapping Cardinalities

Many to one Many to many

Note: Some elements in A and B may not be mapped to any

elements in the other set

Slide No:L2-9

ER Model Basics

• Entity: Real-world object distinguishable from other
objects. An entity is described (in DB) using a set of
attributes.

• Entity Set: A collection of similar entities. E.g., all
employees.

– All entities in an entity set have the same set of
attributes. (Until we consider ISA hierarchies,
anyway!)

– Each entity set has a key.

– Each attribute has a domain.

Employees

ssn
name

lot

Slide No:L2-10

ER Model Basics (Contd.)

• Relationship: Association among two or more entities. E.g.,

Attishoo works in Pharmacy department.

• Relationship Set: Collection of similar relationships.

– An n-ary relationship set R relates n entity sets E1 ... En;

each relationship in R involves entities e1 E1, ..., en En

• Same entity set could participate in different

relationship sets, or in different “roles” in same set.

lot

dname

budgetdid

since
name

Works_In DepartmentsEmployees

ssn

Reports_To

lot

name

Employees

subord

inate

super-

visor

ssn

Slide No:L3-1

Relationship Sets

• A relationship is an association among several

entities

Example:

Hayes depositor A-102

customer entityrelationship setaccount entity

• A relationship set is a mathematical relation among

n  2 entities, each taken from entity sets

{(e1, e2, … en) | e1  E1, e2  E2, …, en  En}

where (e1, e2, …, en) is a relationship

– Example:

(Hayes, A-102)  depositor

Slide No:L3-2

Relationship Set borrower

Slide No:L3-3

Relationship Sets (Cont.)

• An attribute can also be property of a

relationship set.

• For instance, the depositor relationship set
between entity sets customer and account may
have the attribute access-date

Slide No:L3-4

Degree of a Relationship Set

• Refers to number of entity sets that

participate in a relationship set.

• Relationship sets that involve two entity

sets are binary (or degree two).

Generally, most relationship sets in a

database system are binary.

• Relationship sets may involve more than

two entity sets.

Slide No:L3-5

Degree of a Relationship Set

Example: Suppose employees of a bank

may have jobs (responsibilities) at

multiple branches, with different jobs at

different branches. Then there is a

ternary relationship set between entity

sets employee, job, and branch

• Relationships between more than two entity sets

are rare. Most relationships are binary. (More on

this later.)

Slide No:L4-1

Key Constraints

• Consider Works_In:

An employee can

work in many

departments; a dept

can have many

employees.

• In contrast, each dept

has at most one

manager, according

to the key

constraint on

Manages.

Many-to-Many1-to-1 1-to Many Many-to-1

dname

budgetdid

since

lot

name

ssn

ManagesEmployees Departments

Additional

features of the ER

model

Slide No:L4-2

Participation Constraints

• Does every department have a manager?

– If so, this is a participation constraint: the

participation of Departments in Manages is said to be

total (vs. partial).

• Every Departments entity must appear in an

instance of the Manages relationship.

lot

name dname

budgetdid

since
name dname

budgetdid

since

Manages

since

DepartmentsEmployees

ssn

Works_In

Slide No:L4-3

Weak Entities

• A weak entity can be identified uniquely only by considering

the primary key of another (owner) entity.

– Owner entity set and weak entity set must participate in

a one-to-many relationship set (one owner, many weak

entities).

– Weak entity set must have total participation in this

identifying relationship set.

lot

name

agepname

DependentsEmployees

ssn

Policy

cost

Slide No:L4-4

Weak Entity Sets
• An entity set that does not have a primary key is

referred to as a weak entity set.

• The existence of a weak entity set depends on the

existence of a identifying entity set

– it must relate to the identifying entity set via a

total, one-to-many relationship set from the

identifying to the weak entity set

– Identifying relationship depicted using a double

diamond

• The discriminator (or partial key) of a weak entity

set is the set of attributes that distinguishes among

all the entities of a weak entity set.

• The primary key of a weak entity set is formed by the

primary key of the strong entity set on which the

weak entity set is existence dependent, plus the

weak entity set’s discriminator.

Slide No:L4-5

Weak Entity Sets (Cont.)

• We depict a weak entity set by double rectangles.

• We underline the discriminator of a weak entity set

with a dashed line.

• payment_number – discriminator of the payment

entity set

• Primary key for payment – (loan_number,

payment_number)

Slide No:L4-6

Weak Entity Sets (Cont.)

• Note: the primary key of the strong entity set is

not explicitly stored with the weak entity set,

since it is implicit in the identifying relationship.

• If loan_number were explicitly stored, payment

could be made a strong entity, but then the

relationship between payment and loan would be

duplicated by an implicit relationship defined by

the attribute loan_number common to payment

and loan

Slide No:L4-7

More Weak Entity Set Examples

• In a university, a course is a strong entity and a

course_offering can be modeled as a weak entity

• The discriminator of course_offering would be

semester (including year) and section_number (if

there is more than one section)

• If we model course_offering as a strong entity we

would model course_number as an attribute.

Then the relationship with course would be

implicit in the course_number attribute

Slide No:L5-1

ISA (`is a’) Hierarchies

Contract_Emps

name

ssn

Employees

lot

hourly_wages

ISA

Hourly_Emps

contractid

hours_worked

 As in C++, or other PLs,

attributes are inherited.

 If we declare A ISA B,

every A entity is also

considered to be a B

entity.

• Overlap constraints: Can Joe be an Hourly_Emps as well as a
Contract_Emps entity? (Allowed/disallowed)

• Covering constraints: Does every Employees entity also have to
be an Hourly_Emps or a Contract_Emps entity? (Yes/no)

• Reasons for using ISA:

– To add descriptive attributes specific to a subclass.

– To identify entitities that participate in a relationship.

Slide No:L5-2

Aggregation

• Used when we have to

model a relationship

involving (entitity sets

and) a relationship set.

– Aggregation allows

us to treat a

relationship set as

an entity set for

purposes of

participation in

(other)

relationships.

 Aggregation vs. ternary relationship:

 Monitors is a distinct relationship, with a descriptive attribute.

 Also, can say that each sponsorship is monitored by at most one

employee.

budget
didpid

started_on

pbudget

dname

until

DepartmentsProjects Sponsors

Employees

Monitors

lot
name

ssn

since

Slide No:L5-3

Aggregation

 Consider the ternary relationship works_on, which we

saw earlier

 Suppose we want to record managers for tasks

performed by an employee at a branch

Slide No:L5-4

Aggregation (Cont.)

• Relationship sets works_on and manages represent

overlapping information

– Every manages relationship corresponds to a works_on

relationship

– However, some works_on relationships may not

correspond to any manages relationships

• So we can’t discard the works_on relationship

• Eliminate this redundancy via aggregation

– Treat relationship as an abstract entity

– Allows relationships between relationships

– Abstraction of relationship into new entity

Slide No:L5-5

Aggregation (Cont.)

• Eliminate this redundancy via aggregation

– Treat relationship as an abstract entity

– Allows relationships between relationships

– Abstraction of relationship into new entity

• Without introducing redundancy, the following diagram

represents:

– An employee works on a particular job at a

particular branch

– An employee, branch, job combination may have an

associated manager

Slide No:L5-6

E-R Diagram With Aggregation

Slide No:L6-1

Conceptual Design Using the ER Model

• Design choices:

– Should a concept be modeled as an entity or an

attribute?

– Should a concept be modeled as an entity or a

relationship?

– Identifying relationships: Binary or ternary?

Aggregation?

• Constraints in the ER Model:

– A lot of data semantics can (and should) be captured.

– But some constraints cannot be captured in ER

diagrams.

Slide No:L6-2

Entity vs. Attribute

• Should address be an attribute of Employees or an entity

(connected to Employees by a relationship)?

• Depends upon the use we want to make of address

information, and the semantics of the data:

• If we have several addresses per employee, address

must be an entity (since attributes cannot be set-

valued).

• If the structure (city, street, etc.) is important, e.g.,

we want to retrieve employees in a given city,

address must be modeled as an entity (since

attribute values are atomic).

Slide No:L6-3

Entity vs. Attribute (Contd.)

• Works_In4 does not
allow an employee to
work in a department
for two or more
periods.

• Similar to the
problem of wanting
to record several
addresses for an
employee: We want
to record several
values of the
descriptive attributes
for each instance of
this relationship.
Accomplished by
introducing new
entity set, Duration.

name

Employees

ssn lot

Works_In4

from to

dname

budgetdid

Departments

dname

budgetdid
name

Departments

ssn lot

Employees Works_In4

Durationfrom to

Slide No:L6-4

Entity vs. Relationship

• First ER diagram OK if a
manager gets a separate
discretionary budget for
each dept.

• What if a manager gets a
discretionary budget
that covers all managed
depts?

– Redundancy: dbudget
stored for each dept
managed by manager.

– Misleading: Suggests
dbudget associated
with department-mgr
combination.

Manages2

name dname

budgetdid

Employees Departments

ssn lot

dbudgetsince

dname

budgetdid

DepartmentsManages2

Employees

name
ssn lot

since

Managers dbudget

ISA

This fixes the

problem!

Slide No:L6-5

Binary vs. Ternary Relationships

• If each policy is

owned by just 1

employee, and

each dependent

is tied to the

covering policy,

first diagram is

inaccurate.

• What are the

additional

constraints in

the 2nd

diagram?

agepname

DependentsCovers

name

Employees

ssn lot

Policies

policyid cost

Beneficiary

agepname

Dependents

policyid cost

Policies

Purchaser

name

Employees

ssn lot

Bad design

Better design

Slide No:L6-6

Binary vs. Ternary Relationships (Contd.)

• Previous example illustrated a case when two binary
relationships were better than one ternary relationship.

• An example in the other direction: a ternary relation
Contracts relates entity sets Parts, Departments and
Suppliers, and has descriptive attribute qty. No
combination of binary relationships is an adequate
substitute:

– S “can-supply” P, D “needs” P, and D “deals-with” S
does not imply that D has agreed to buy P from S.

– How do we record qty?

Slide No:L7-1

Summary of Conceptual Design

• Conceptual design follows requirements analysis,

– Yields a high-level description of data to be stored

• ER model popular for conceptual design

– Constructs are expressive, close to the way people think

about their applications.

• Basic constructs: entities, relationships, and attributes (of

entities and relationships).

• Some additional constructs: weak entities, ISA hierarchies,

and aggregation.

• Note: There are many variations on ER model.

Slide No:L7-2

Summary of ER (Contd.)

• Several kinds of integrity constraints can be expressed in the

ER model: key constraints, participation constraints, and

overlap/covering constraints for ISA hierarchies. Some foreign

key constraints are also implicit in the definition of a

relationship set.

– Some constraints (notably, functional dependencies) cannot

be expressed in the ER model.

– Constraints play an important role in determining the best

database design for an enterprise.

Slide No:L7-3

Summary of ER (Contd.)

• ER design is subjective. There are often many ways to
model a given scenario! Analyzing alternatives can be
tricky, especially for a large enterprise. Common choices
include:

– Entity vs. attribute, entity vs. relationship, binary or n-
ary relationship, whether or not to use ISA hierarchies,
and whether or not to use aggregation.

• Ensuring good database design: resulting relational
schema should be analyzed and refined further. FD
information and normalization techniques are especially
useful.

