
AKSHAYA INSTITUTE OF

TECHNOLOGY
Lingapura, Tumkur-Koratagere Road, Tumkur-572106.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Module 2 Notes for

“Database Management System”

[BCS403]

Prepared by: -

Mr. CHARAN S N

Assistant Professor, Department of CSE.

Akshaya Institute of Technology, Tumakuru

Database Management System]

Module 2

Chapter 1: The Relational Data Model

Introduction

The relational data model was first introduced by Ted Codd of IBM Research in 1970 in a classic

paper (Codd 1970), and it attracted immediate attention due to its simplicity and mathematical

foundation. The model uses the concept of a mathematical relation which looks somewhat like a

table of values as its basic building block, and has its theoretical basis in set theory and first-order

predicate logic.

The first commercial implementations of the relational model became available in the early 1980s,

such as the SQL/DS system on the MVS operating system by IBM and the Oracle DBMS. Since

then, the model has been implemented in a large number of commercial systems. Current popular

relational DBMSs (RDBMSs) include DB2 and Informix Dynamic Server (from IBM), Oracle and

Rdb (from Oracle), Sybase DBMS (from Sybase) and SQLServer and Access (from Microsoft). In

addition, several open source systems, such as MySQL and PostgreSQL, are available.

1.1 Relational Model Concepts

The relational model represents the database as a collection of relations. Informally, each relation

resembles a table of values or, to some extent, a flat file of records. It is called a flat file because

each record has a simple linear or flat structure.

When a relation is thought of as a table of values, each row in the table represents a collection of

related data values. A row represents a fact that typically corresponds to a real-world entity or

relationship. The table name and column names are used to help to interpret the meaning of the

values in each row.

For example, in STUDENT relation because each row represents facts about a particular student

entity. The column names Name, Student_number, Class, and Major specify how to interpret the

data values in each row, based on the column each value is in. All values in a column are of the same

data type.

In the formal relational model terminology, a row is called a tuple, a column header is called an

attribute, and the table is called a relation. The data type describing the types of values that can

appear in each column is represented by a domain of possible values.

https://vtucode.in

[BCS403]

Database Management System]

1.1.1 Domains, Attributes, Tuples, and Relations

Domain

The preceding are called logical definitions of domains. A data type or format is also specified

for each domain. For example, the data type for the domain Usa_phone_numbers can be

declared as a character string of the form (ddd)ddddddd, where each d is a numeric (decimal)

digit and the first three digits form a valid telephone area code. The data type for

Employee_ages is an integer number between 15 and 80.

 Attribute

 An attribute Ai is the name of a role played by some domain D in the relation schema R. D is

 called the domain of Ai and is denoted by dom(Ai).

 Tuple

 Mapping from attributes to values drawn from the respective domains of those attributes. Tuples

 are intended to describe some entity (or relationship between entities) in the miniworld

 Example: a tuple for a PERSON entity might be

 { Name -- --> Male, Age --> 25 }

Relation

 A named set of tuples all of the same form i.e., having the same set of attributes.

https://vtucode.in

[BCS403]

Database Management System]

 Relation schema

 A relation schema R, denoted by R(A1, A2, ...,An), is made up of a relation name R and a list

of attributes A1, A2, ...,An. Each attribute Ai is the name of a role played by some domain D in

the relation schema R. D is called the domain of Ai and is denoted by dom(Ai). A relation

schema is used to describe a relation; R is called the name of this relation.

The degree (or arity) of a relation is the number of attributes n of its relation schema. A relation

of degree seven, which stores information about university students,would contain seven

attributes describing each student. as follows:

 STUDENT(Name, Ssn, Home_phone, Address, Office_phone, Age, Gpa)

 Using the data type of each attribute, the definition is sometimes written as:

 STUDENT(Name: string, Ssn: string, Home_phone: string, Address: string,

 Office_phone: string, Age: integer, Gpa: real)

 Domains for some of the attributes of the STUDENT relation:

 dom(Name) = Names; dom(Ssn) = Social_security_numbers;

 dom(HomePhone)=USA_phone_numbers,dom(Office_phone)= USA_phone_numbers,

 Relation (or relation state)

 A relation (or relation state) r of the relation schema by R(A1, A2, ...,An), also denoted by r(R),

is a set of n-tuples r = {t1, t2, ..., tm}. Each n-tuple t is an ordered list of n values t =<v1, v2, ...,

vn i) or is a special NULL value. The ith

value in tuple t, which corresponds to the attribute Ai, is referred to as t[Ai] or t. Ai .

The terms relation intension for the schema R and relation extension for a relation state r(R)

are also commonly used.

https://vtucode.in

[BCS403]

Database Management System]

1.1.2 Characteristics of Relations

1. Ordering of Tuples in a Relation

 A relation is defined as a set of tuples. Mathematically, elements of a set have no order

among them; hence, tuples in a relation do not have any particular order. Tuple ordering is

not part of a relation definition because a relation attempts to represent facts at a logical or

abstract level. Many tuple orders can be specified on the same relation.

2. Ordering of Values within a Tuple and an Alternative Definition of a Relation

The order of attributes and their values is not that important as long as the correspondence

between attributes and values is maintained. An alternative definition of a relation can be

given, making the ordering of values in a tuple unnecessary. In this definition A relation

schema R(A1, A2, ...,An), set of attributes and a relation state r(R) is a finite set of mappings

r = {t1, t2, ..., tm}, where each tuple ti is a mapping from R to D.

According to this definition of tuple as a mapping, a tuple can be considered as a set of

(<attribute>, <value>) pairs, where each pair gives the value of the mapping from an attribute

Ai to a value vi from dom(Ai) .The ordering of attributes is not important, because the

attribute name appears with its value.

3. Values and NULLs in the Tuples

Each value in a tuple is atomic. NULL values are used to represent the values of attributes

that may be unknown or may not apply to a tuple. For example some STUDENT tuples have

NULL for their office phones because they do not have an office .Another student has a

NULL for home phone In general, we can have several meanings for NULL values, such as

value unknown, value exists but is not available, or attribute does not apply to this tuple

(also known as value undefined).

4. Interpretation (Meaning) of a Relation

The relation schema can be interpreted as a declaration or a type of assertion. For example,

the schema of the STUDENT relation of asserts that, in general, a student entity has a Name,

Ssn, Home_phone, Address, Office_phone, Age, and Gpa. Each tuple in the relation can then

be interpreted as a particular instance of the assertion.For example, the first tuple asserts the

fact that there is a STUDENT whose Name is Benjamin Bayer, Ssn is 305-61-2435, Age is

19, and so on.

 An alternative interpretation of a relation schema is as a predicate; in this case, the values in

 each tuple are interpreted as values that satisfy the predicate.

https://vtucode.in

[BCS403]

Database Management System]

1.1.3 Relational Model Notation

 Relation schema R of degree n is denoted by by R(A1, A2, ...,An)

 Uppercase letters Q, R, S denote relation names

 Lowercase letters q, r, s denote relation states

 Letters t, u, v denote tuples

 In general, the name of a relation schema such as STUDENT also indicates the current set of

tuples in that relation

 An attribute A can be qualified with the relation name R to which it belongs by using the dot

notation R.A for example, STUDENT.Name or STUDENT.Age.

 An n-tuple t in a relation r(R) is denoted by t = <v1, v2, ..., vn>, where vi is the value

corresponding to attribute Ai. The following notation refers to component values of tuples:

 Both t[Ai] and t.Ai (and sometimes t[i]) refer to the value vi in t for attribute Ai.

 Both t[Au, Aw, ..., Az] and t.(Au, Aw, ..., Az), where Au, Aw, ..., Az is a list of attributes from R,

refer to the subtuple of values <vu, vw, ..., vz> from t corresponding to the attributes specified

in the list.

1.2 Relational Model Constraints and Relational Database Schemas

 Constraints are restrictions on the actual values in a database state. These constraints are

 derived from the rules in the miniworld that the database represents. Constraints on databases

 can generally be divided into three main categories:

 1. Inherent model-based constraints or implicit constraints

 Constraints that are inherent in the data model.

 The characteristics of relations are the inherent constraints of the relational model and

belong to the first category. For example, the constraint that a relation cannot have

duplicate tuples is an inherent constraint.

2. Schema-based constraints or explicit constraints

 Constraints that can be directly expressed in schemas of the data model, typically

 by specifying them in the DDL.

 The schema-based constraints include domain constraints, key constraints, constraints

on NULLs, entity integrity constraints, and referential integrity constraints.

 3. Application-based or semantic constraints or business rules

 Constraints that cannot be directly expressed in the schemas of the data model, and

hence must be expressed and enforced by the application programs.

https://vtucode.in

[BCS403]

Database Management System]

 Examples of such constraints are the salary of an employee should not exceed the

salary of the and the maximum number of hours an employee

can work on all projects per week is 56.

 1.2.1 Domain Constraints

Domain Constraints specify that within each tuple, the value of each attribute A must be

an atomic value from the domain dom(A). The data types associated with domains

typically include standard numeric data types for integers (such as short integer, integer,

and long integer) and real numbers (float and doubleprecision float). Characters,

Booleans, fixed-length strings, and variable-length strings are also available, as are date,

time, timestamp, and money, or other special data types.

1.2.2 Key Constraints and Constraints on NULL Values

 All tuples in a relation must also be distinct.This means that no two tuples can have the

same combination of values for all their attributes.There are other subsets of attributes of

a relation schema R with the property that no two tuples in any relation state r of R should

have the same combination of values for these attributes.

 Suppose that we denote one such subset of attributes by SK; then for any two distinct

tuples t1 and t2 in a relation state r of R, we have the constraint that: t1 t2[SK] .

such set of attributes SK is called a superkey of the relation schema R

 superkey

 A superkey SK specifies a uniqueness constraint that no two distinct tuples in any state r of

R can have the same value for SK. Every relation has at least one default superkey the set

of all its attributes.

 Key

A key K of a relation schema R is a superkey of R with the additional property that

removing any attribute A from K leaves a set of attributes K that is not a superkey of R

anymore. Hence, a key satisfies two properties:

1. Two distinct tuples in any state of the relation cannot have identical values for (all) the

attributes in the key. This first property also applies to a superkey.

https://vtucode.in

[BCS403]

Database Management System]

2. It is a minimal superkey that is, a superkey from which we cannot remove any

attributes and still have the uniqueness constraint in condition 1 hold.This property is

not required by a superkey.

 Example: Consider the STUDENT relation

 The attribute set {Ssn} is a key of STUDENT because no two student tuples can

have the same value for Ssn

 Any set of attributes that includes Ssn for example, {Ssn, Name, Age} is a

superkey

 The superkey {Ssn, Name, Age} is not a key of STUDENT because removing

 Name or Age or both from the set still leaves us with a superkey

 In general, any superkey formed from a single attribute is also a key. A key with multiple

attributes must require all its attributes together to have the uniqueness property.

Candidate key

A relation schema may have more than one key. In this case, each of the keys is called a

candidate key. For example, the CAR relation has two candidate keys: License_number and

Engine_serial_number

https://vtucode.in

[BCS403]

Database Management System]

 Primary key

It is common to designate one of the candidate keys as the primary key of the relation. This

is the candidate key whose values are used to identify tuples in the relation.We use the

convention that the attributes that form the primary key of a relation schema are underlined.

Other candidate keys are designated as unique keys and are not underlined

Another constraint on attributes specifies whether NULL values are or are not permitted. For

example, if every STUDENT tuple must have a valid, non-NULL value for the Name attribute, then

Name of STUDENT is constrained to be NOT NULL.

1.2.3 Relational Databases and Relational Database Schemas

A Relational database schema S is a set of relation schemas S = {R1, R2, ..., Rm} and a s et

of integrity constraints IC.

Example of relational database schema:

 COMPANY = {EMPLOYEE, DEPARTMENT, DEPT_LOCATIONS, PROJECT,

WORKS_ON, DEPENDENT}

Figure1.2.3 (a): Schema diagram for the COMPANY relational database schema.

 The underlined attributes represent primary keys

A Relational database state is a set of relation states DB = {r1, r2, ..., rm}.Each ri is a state of

R and such that the ri relation states satisfy integrity constraints specified in IC.

https://vtucode.in

[BCS403]

Database Management System]

Figure 1.2.3(b) :One possible database state for the COMPANY relational database schema.

https://vtucode.in

[BCS403]

Database Management System]

A database state that does not obey all the integrity constraints is called Invalid state and a state that

satisfies all the constraints in the defined set of integrity constraints IC is called a Valid state

Attributes that represent the same real-world concept may or may not have identical names in

different relations. For example, the Dnumber attribute in both DEPARTMENT and

DEPT_LOCATIONS stands for the same real-world concept the number given to a department.

That same concept is called Dno in EMPLOYEE and Dnum in PROJECT.

Alternatively, attributes that represent different concepts may have the same name in different

relations. For example, we could have used the attribute name Name for both Pname of PROJECT

and Dname of DEPARTMENT; in this case, we would have two attributes that share the same name

but represent different realworld concepts project names and department names.

1.2.4 Integrity, Referential Integrity, and Foreign Keys

Entity integrity constraint

The entity integrity constraint states that no primary key value can be NULL. This is because the

primary key value is used to identify individual tuples in a relation. Having NULL values for the

primary key implies that we cannot identify some tuples. For example, if two or more tuples had

NULL for their primary keys, we may not be able to distinguish them if we try to reference them

from other relations.

Key constraints and entity integrity constraints are specified on individual relations.

Referential integrity constraint

The referential integrity constraint is specified between two relations and is used to maintain the

consistency among tuples in the two relations. Informally, the referential integrity constraint states

that a tuple in one relation that refers to another relation must refer to an existing tuple in that

relation.

For example COMPANY database, the attribute Dno of EMPLOYEE gives the department number

for which each employee works; hence, its value in every EMPLOYEE tuple must match the

Dnumber value of some tuple in the DEPARTMENT relation.

https://vtucode.in

[BCS403]

Database Management System]

To define referential integrity more formally, first we define the concept of a foreign key. The

conditions for a foreign key, given below, specify a referential integrity constraint between the two

relation schemas R1 and R2.

A set of attributes FK in relation schema R1 is a foreign key of R1 that references relation R2 if it

satisfies the following rules:

1. Attributes in FK have the same domain(s) as the primary key attributes PK of R2; the

 attributes FK are said to reference or refer to the relation R2.

 2. A value of FK in a tuple t1 of the current state r1(R1) either occurs as a value of PK for

 some tuple t2 in the current state r2(R2) or is NULL.

In the former case, we have t1[FK] = t2[PK], and we say that the tuple t1 references or refers to the

tuple t2.

In this definition, R1 is called the referencing relation and R2 is the referenced relation. If these

two conditions hold, a referential integrity constraint from R1 to R2 is said to hold.

1.2.5 Other Types of Constraints

Semantic integrity constraints

Semantic integrity constraints can be specified and enforced within the application programs that

update the database, or by using a general-purpose constraint specification language. Examples of

such constraints are the salary of an employee should not exceed the salary of the

supervisor and the maximum number of hours an employee can work on all projects per week is 56.

Mechanisms called triggers and assertions can be used. In SQL, CREATE ASSERTION and

CREATE TRIGGER statements can be used for this purpose.

Functional dependency constraint

Functional dependency constraint establishes a functional relationship among two sets of attributes X

and Y. This constraint specifies that the value of X determines a unique value of Y in all states of a

relation; it is denoted as a functional dependency X Y. We use functional dependencies and other

types of dependencies as tools to analyze the quality of

relations to improve their quality.

State constraints(static constraints)

 Define the constraints that a valid state of the database must satisfy

Transition constraints(dynamic constraints)

 Define to deal with state changes in the database

https://vtucode.in

[BCS403]

Database Management System]

1.3 Update Operations, Transactions, and Dealing with Constraint Violations

The operations of the relational model can be categorized into retrievals and updates

There are three basic operations that can change the states of relations in the database:

 1. Insert - used to insert one or more new tuples in a relation

 2. Delete- used to delete tuples

 3. Update (or Modify)- used to change the values of some attributes in existing tuples

Whenever these operations are applied, the integrity constraints specified on the relational database

schema should not be violated.

1.3.1 The Insert Operation

The Insert operation provides a list of attribute values for a new tuple t that is to be inserted into a

elation R. Insert can violate any of the four types of constraints

1. Domain constraints : if an attribute value is given that does not appear in the corresponding

domain or is not of the appropriate data type

2. Key constraints : if a key value in the new tuple t already exists in another tuple in the

relation r(R)

3. Entity integrity: if any part of the primary key of the new tuple t is NULL

4. Referential integrity : if the value of any foreign key in t refers to a tuple that does not exist

in the referenced relation

 Examples:

 1. Operation:

 -04-

 F, 28000, NULL, 4>

 Result: This insertion violates the entity integrity constraint (NULL for the primary key

 Ssn), so it is rejected

2. Operation:

 -04-

 Result: This insertion violates the key constraint because another tuple with the same Ssn

 value already exists in the EMPLOYEE relation, and so it is rejected.

3.Operation:

 -04-

https://vtucode.in

[BCS403]

Database Management System]

 Result: This insertion violates the referential integrity constraint specified on Dno in

 EMPLOYEE because no corresponding referenced tuple exists in DEPARTMENT

 with Dnumber = 7.

4. Operation:

 -04-

 Result: This insertion satisfies all constraints, so it is acceptable.

If an insertion violates one or more constraints, the default option is to reject the insertion.It would

be useful if the DBMS could provide a reason to the user as to why the insertion was rejected.

Another option is to an attempt to correct the reason for rejecting the insertion

1.3.2 The Delete Operation

The Delete operation can violate only referential integrity. This occurs if the tuple being deleted is

referenced by foreign keys from other tuples in the database. To specify deletion, a condition on the

attributes of the relation selects the tuple (or tuples) to be deleted.

Examples:

1. Operation:

 Delete the WORKS_

 Result: This deletion is acceptable and deletes exactly one tuple.

2. Operation:

 Result: This deletion is not acceptable, because there are tuples in WORKS_ON that refer

 to this tuple. Hence, if the tuple in EMPLOYEE is deleted, referential integrity

 violations will result.

3. Operation:

 Result: This deletion will result in even worse referential integrity violations, because the

 tuple involved is referenced by tuples from the EMPLOYEE, DEPARTMENT,

 WORKS_ON, and DEPENDENT relations.

Several options are available if a deletion operation causes a violation

 1. restrict - is to reject the deletion

 2. cascade, is to attempt to cascade (or propagate) the deletion by deleting tuples that reference

 the tuple that is being deleted

https://vtucode.in

[BCS403]

Database Management System]

3. Set null or set default - is to modify the referencing attribute values that cause the violation;

 each such value is either set to NULL or changed to reference another default valid tuple.

1.3.3 The Update Operation

 The Update (or Modify) operation is used to change the values of one or more attributes in a tuple

 (or tuples) of some relation R. It is necessary to specify a condition on the attributes of the relation

 to select the tuple (or tuples) to be modified.

 Examples:

1. Operation:

 Update the salary of the EMPLOYEE tuple with Ssn =

 Result: Acceptable.

2. Operation:

 Result: Unacceptable, because it violates referential integrity.

3. Operation:

 Result: Unacceptable, because it violates primary key constraint by repeating a value

that already exists as a primary key in another tuple; it violates referential integrity

constraints because there are other relations that refer to the existing value of Ssn

Updating an attribute that is neither part of a primary key nor of a foreign key usually causes no

problems; the DBMS need only check to confirm that the new value is of the correct data type and

domain.

1.3.4 The Transaction Concept

A transaction is an executing program that includes some database operations, such as reading from

the database, or applying insertions, deletions, or updates to the database. At the end of the

transaction, it must leave the database in a valid or consistent state that satisfies all the constraints

specified on the database schema A single transaction may involve any number of retrieval

operations and any number of update operations. These retrievals and updates will together form an

atomic unit of work against the database.For example, a transaction to apply a bank withdrawal will

typically read the user account record, check if there is a sufficient balance, and then update the

record by the withdrawal amount.

https://vtucode.in

[BCS403]

Database Management System]

Chapter 2: Relational Algebra
2.1 Introduction

Relational algebra is the basic set of operations for the relational model. These operations enable a

user to specify basic retrieval requests as relational algebra expressions. The result of an operation is

a new relation, which may have been formed from one or more input relations.

The relational algebra is very important for several reasons

 First, it provides a formal foundation for relational model operations.

 Second, and perhaps more important, it is used as a basis for implementing and optimizing

queries in the query processing and optimization modules that are integral parts of

relational database management systems (RDBMSs)

 Third, some of its concepts are incorporated into the SQL standard query language for

RDBMSs

2.2 Unary Relational Operations: SELECT and PROJECT

2.2.1 The SELECT Operation

tuples from a relation

based on a selection condition. The selection condition acts as a filter that keeps only those tuples

that satisfy a qualifying condition. Alternatively, we can consider the SELECT operation to restrict

the tuples in a relation to only those tuples that satisfy the condition.

The SELECT operation can also be visualized as a horizontal partition of the relation into two sets

of tuples those tuples that satisfy the condition and are selected, and those tuples that do not satisfy

the condition and are discarded.

In general, the select operation is denoted by

 <selection condition>(R)

 where,

 - the symbol is used to denote the select operator

 - the selection condition is a Boolean (conditional) expression specified on the attributes of

 relation R

 - tuples that make the condition true are selected

 appear in the result of the operation

 - tuples that make the condition false are filtered out

 discarded from the result of the operation

https://vtucode.in

[BCS403]

Database Management System]

The Boolean expression specified in <selection condition> is made up of a number of clauses of the

form:

 <attribute name> <comparison op> <constant value>

 or

 <attribute name> <comparison op> <attribute name>

 where

 <attribute name> is the name of an attribute of R,

 <constant value> is a constant value from the attribute domain

Clauses can be connected by the standard Boolean operators and, or, and not to form a general

selection condition

Examples:

1. Select the EMPLOYEE tuples whose department number is 4.

 DNO = 4 (EMPLOYEE)

2. Select the employee tuples whose salary is greater than $30,000.

 SALARY > 30,000 (EMPLOYEE)

3. Select the tuples for all employees who either work in department 4 and make over $25,000
per year, or work in department 5 and make over $30,000

 (Dno=4 AND Salary>25000) OR (Dno=5 AND Salary>30000)(EMPLOYEE)

The result of a SELECT operation can be determined as follows:

 The <selection condition> is applied independently to each individual tuple t in R

 If the condition evaluates to TRUE, then tuple t is selected.All the selected tuples appear in
the result of the SELECT operation

 The Boolean conditions AND, OR, and NOT have their normal interpretation, as follows:

 - (cond1 AND cond2) is TRUE if both (cond1) and (cond2) are TRUE; otherwise,it is

 FALSE.

 - (cond1 OR cond2) is TRUE if either (cond1) or (cond2) or both are TRUE; otherwise, it is

 FALSE.

 - (NOT cond) is TRUE if cond is FALSE; otherwise, it is FALSE.

https://vtucode.in

[BCS403]

Database Management System]

The SELECT operator is unary; that is, it is applied to a single relation. The degree of the relation

resulting from a SELECT operation is the same as the degree of R.The number of tuples in the

resulting relation is always less than or equal to the number of tuples in R. That is,

 c

The fraction of tuples selected by a selection condition is referred to as the selectivity of the

condition.

The SELECT operation is commutative; that is,

 <cond1> <cond2> <cond2> <cond1>(R))

Hence, a sequence of SELECTs can be applied in any order.we can always combine a cascade (or

sequence) of SELECT operations into a single SELECT operation with a conjunctive (AND)

condition; that is,

 <cond1> <condn>(R <cond1> AND<cond2> AND ... AND <condn>(R)

In SQL, the SELECT condition is specified in the WHERE clause of a query.For example, the

following operation:

 Dno=4 AND Salary>25000 (EMPLOYEE)

would to the following SQL query:

 SELECT * FROM EMPLOYEE WHERE Dno=4 AND Salary>25000;

2.2.2 The PROJECT Operation

The PROJECT operation denoted by selects certain columns from the table and discards the

other columns Used when we are interested in only certain attributes of a relation. The result of the

PROJECT operation can be visualized as a vertical partition of the relation into two relations:

 - one has the needed columns (attributes) and contains the result of the operation

 - the other contains the discarded columns

The general form of the PROJECT operation is

 <attribute list>(R)

 where

 - symbol used to represent the PROJECT operation,

 <attributelist> - desired sublist of attributes from the attributes of relation R.

The result of the PROJECT operation has only the attributes specified in <attribute list> in the same

order as they appear in the list. Hence, its degree is equal to the number of attributes in <attribute

list>

https://vtucode.in

[BCS403]

Database Management System]

 Example :

1. T
follows:

 Lname, Fname, Salary(EMPLOYEE)

 If the attribute list includes only nonkey attributes of R, duplicate tuples are likely to
occur. The result of the PROJECT operation is a set of distinct tuples, and hence a valid
relation. This is known as duplicate elimination.For example, consider the following
PROJECT operation:

 gender, Salary(EMPLOYEE)

 T resulting relation even though this combination of

 values appears twice in the EMPLOYEE relation.

The number of tuples in a relation resulting from a PROJECT operation is always less than or equal

to the number of tuples in R. Commutativity does not hold on PROJECT

 <list1> <list2>(R <list1>(R)

 as long as <list2> contains the attributes in <list1>; otherwise, the left-hand side is an incorrect

expression.

In SQL, the PROJECT attribute list is specified in the SELECT clause of a query. For example, the

following operation:

 gender, Salary(EMPLOYEE)

would correspond to the following SQL query:

 SELECT DISTINCT gender, Salary FROM EMPLOYEE

https://vtucode.in

[BCS403]

Database Management System]

2.2.3 Sequences of Operations and the RENAME Operation

 For most queries, we need to apply several relational algebra operations one after the other. Either

we can write the operations as a single relational algebra expression by nesting the operations, or we

can apply one operation at a time and create intermediate result relations. In the latter case, we must

give names to the relations that hold the intermediate results.

For example, to retrieve the first name, last name, and salary of all employees who work in

department number 5, we must apply a SELECT and a PROJECT operation. We can write a single

relational algebra expression, also known as an in-line expression, as follows:

Fname, Lname, Salary(Dno=5(EMPLOYEE))

Alternatively, we can explicitly show the sequence of operations, giving a name to each intermediate

relation, as follows:

 Dno=5(EMPLOYEE)

 Fname, Lname, Salary(DEP5_EMPS)

We can also use this technique to rename the attributes in the intermediate and result relations. To

rename the attributes in a relation, we simply list the new attribute names in parentheses

 Dno=5(EMPLOYEE)

 R Fname, Lname, Salary(TEMP)

If no renaming is applied, the names of the attributes in the resulting relation of a SELECT operation

are the same as those in the original relation and in the same order.For a PROJECT operation with no

renaming, the resulting relation has the same attribute names as those in the projection list and in the

same order in which they appear in the list.

We can also define a formal RENAME operation which can rename either the relation name or the

attribute names, or both as a unary operator.

https://vtucode.in

[BCS403]

Database Management System]

The general RENAME operation when applied to a relation R of degree n is denoted by any of the
following three forms:

 1. S(B1, B2, ..., Bn)(R) RENAME operator

 2. S(R) S new relation name

 3. (B1, B (R) B1,B2 n- new attribute names

The first expression renames both the relation and its attributes. Second renames the relation only
and the third renames the attributes only.If the attributes of R are (A1, A2, ..., An) in that order, then
each Ai is renamed as Bi.

Renaming in SQL is accomplished by aliasing using AS, as in the following example:

 SELECT E.Fname AS First_name,

 E.Lname AS Last_name,

 E.Salary AS Salary

 FROM EMPLOYEE AS E

 WHERE E.Dno=5,

2.3 Relational Algebra Operations from Set Theory

2.3.1 The UNION, INTERSECTION, and MINUS Operations

 UNION: The result of this operation, denoted by R S, is a relation that includes all tuples

that are either in R or in S or in both R and S. Duplicate tuples are eliminated.

 INTERSECTION: The result of this operation, denoted by R S, is a relation that includes

all tuples that are in both R and S.

 SET DIFFERENCE (or MINUS): The result of this operation, denoted by R S, is a

relation that includes all tuples that are in R but not in S.

Example: Consider the the following two relations: STUDENT & INSTRUCTOR

https://vtucode.in

[BCS403]

Database Management System]

STUDENT INSTRUCTOR STUDENT INSTRUCTOR

 STUDENT INSTRUCTOR

Example: To retrieve the Social Security numbers of all employees who either work in department 5
or directly supervise an employee who works in department 5

 Dno=5(EMPLOYEE)

 Ssn(DEP5_EMPS)

 Super_ssn(DEP5_EMPS)

 RESULT2

https://vtucode.in

[BCS403]

Database Management System]

Single relational algebra expression:

 Ssn Dno=5 (EMPLOYEE)) Super_ssn (Dno=5 (EMPLOYEE))

UNION, INTERSECTION and SET DIFFERENCE are binary operations; that is, each is applied to

two sets (of tuples). When these operations are adapted to relational databases, the two relations on

which any of these three operations are applied must have the same type of tuples; this condition has

been called union compatibility or type compatibility.

Two relations R(A1, A2, ..., An) and S(B1, B2, ..., Bn) are said to be union compatible (or type

compatible) if they have the same degree n and if dom(Ai) = dom(Bi

the two relations have the same number of attributes and each corresponding pair of attributes has

the same domain.

Both UNION and INTERSECTION are commutative operations; that is,

 R S = S R and R S = S R

Both UNION and INTERSECTION can be treated as n-ary operations applicable to any number of
relations because both are also associative operations; that is,

 R (S T) = (R S) T and (R S T = R S T)

The MINUS operation is not commutative; that is, in general,

 R S S R

INTERSECTION can be expressed in terms of union and set difference as follows:

In SQL, there are three operations UNION, INTERSECT, and EXCEPT that correspond to the
set operations

https://vtucode.in

[BCS403]

Database Management System]

2.3.2 The CARTESIAN PRODUCT (CROSS PRODUCT) Operation

The CARTESIAN PRODUCT operation also known as CROSS PRODUCT or CROSS JOIN

denoted by × is a binary set operation, but the relations on which it is applied do not have to be

union compatible. This set operation produces a new element by combining every member (tuple)

from one relation (set) with every member (tuple) from the other relation (set)

In general, the result of R(A1, A2, ..., An) × S(B1, B2, ..., Bm) is a relation Q with degree n + m

attributes Q(A1, A2, ..., An, B1, B2, ..., Bm), in that order. The resulting relation Q has one tuple for

each combination of tuples one from R and one from S. Hence, if R has nR tuples (denoted as |R| =

nR), and S has nS tuples, then R × S will have nR * nS tuples

Example

 (EMPLOYEE)

 Fname, Lname, Ssn(FEMALE_EMPS)

 Ssn=Essn(EMP_DEPENDENTS)

 Fname, Lname, Dependent_name (AC TUAL_DEPENDENTS)

https://vtucode.in

[BCS403]

Database Management System]

 The CARTESIAN PRODUCT creates tuples with the combined attributes of two relations. We

 can SELECT related tuples only from the two relations by specifying an appropriate selection

 condition after the Cartesian product.

 In SQL, CARTESIAN PRODUCT can be realized by using the CROSS JOIN option in joined

 tables

2.4 Binary Relational Operations: JOIN and DIVISION

2.4.1 The JOIN Operation

 The JOIN operation, denoted by is used to combine related tuples from two relations into

It allows us to process relationships among relations.The general form of a

JOIN operation on two relations R(A1, A2, ..., An) and S(B1, B2, ..., Bm) is

 R <join conditio>S

 Example: Retrieve the name of the manager of each department.

whose Ssn value matches the Mgr_ssn value in the department tuple

https://vtucode.in

[BCS403]

Database Management System]

 The result of the JOIN is a relation Q with n + m attributes Q(A1, A2, ..., An,B1, B2, ..., Bm in that

order.Q has one tuple for each combination of tuples one from R and one from S whenever the

combination satisfies the join condition. This is the main difference between CARTESIAN

PRODUCT and JOIN. In JOIN, only combinations of tuples satisfying the join condition appear

in the result, whereas in the CARTESIAN PRODUCT all combinations of tuples are included in

the result. The join condition is specified on attributes from the two relations R and S and is

evaluated for each combination of tuples.

 Each tuple combination for which the join condition evaluates to TRUE is included in the resulting

relation Q as a single combined tuple. A general join condition is of the form

 <condition> AND <condition> AND...AND <condition>

 where each <condition> is of the form Ai Bj, Ai is an attribute of R, B is an attribute of S, Ai

and Bj A

JOIN operation with such a general join condition is called a THETA JOIN. Tuples whose join

attributes are NULL or for which the join condition is FALSE do not appear in the result.

2.4.2 Variations of JOIN: The EQUIJOIN and NATURAL JOIN

The most common use of JOIN involves join conditions with equality comparisons only. Such a

JOIN, where the only comparison operator used is =, is called an EQUIJOIN.In the result of an

EQUIJOIN we always have one or more pairs of attributes that have identical values in every tuple.

For example the values of the attributes Mgr_ssn and Ssn are identical in every tuple of

DEPT_MGR (the EQUIJOIN result) because the equality join condition specified on these two

attributes requires the values to be identical in every tuple in the result.

The standard definition of NATURAL JOIN requires that the two join attributes (or each pair of

join attributes) have the same name in both relations. If this is not the case, a renaming operation is

applied first. Suppose we want to combine each PROJECT tuple with the DEPARTMENT tuple that

controls the project.first we rename the Dnumber attribute of DEPARTMENT to Dnum so that it

has the same name as the Dnum attribute in PROJECT and then we apply NATURAL JOIN:

 (Dname, Dnum, Mgr_ssn, Mgr_start_date) (DEPARTMENT)

The same query can be done in two steps by creating an intermediate table DEPT as follows:

 (Dname, Dnum, Mgr_ssn,Mgr_start_date)(DEPARTMENT)

https://vtucode.in

[BCS403]

Database Management System]

The attribute Dnum is called the join attribute for the NATURAL JOIN operation, because it is the

only attribute with the same name in both relations.

If the attributes on which the natural join is specified already have the same names in both relations,

renaming is unnecessary. For example, to apply a natural join on the Dnumber attributes of

DEPARTMENT and DEPT_LOCATIONS, it is sufficient to write

In general, the join condition for NATURAL JOIN is constructed by equating each pair of join

attributes that have the same name in the two relations and combining these conditions with AND.

If no combination of tuples satisfies the join condition, the result of a JOIN is an empty relation with

zero tuples.

A more general, but nonstandard definition for NATURAL JOIN is

where,

 <list1> : list of i attributes from R,

 <list2> : list of i attributes from S

The lists are used to form equality comparison conditions between pairs of corresponding attributes
and then the conditions are then ANDed together. Only the list corresponding to attributes of the first
relation R <list1> is kept in the result Q.

https://vtucode.in

[BCS403]

Database Management System]

In general, if R has nR tuples and S has nS tuples, the result of a JOIN operation R <join condition> S

will have between zero and nR * nS tuples. The expected size of the join result divided by the

maximum size nR * nS leads to a ratio called join selectivity, which is a property of each join

condition. If there is no join condition, all combinations of tuples qualify and the JOIN degenerates

into a CARTESIAN PRODUCT, also called CROSS PRODUCT or CROSS JOIN.

A single JOIN operation is used to combine data from two relations so that related information can

be presented in a single table. These operations are also known as inner joins. Informally, an inner

join is a type of match and combine operation defined formally as a combination of CARTESIAN

PRODUCT and SELECTION.The NATURAL JOIN or EQUIJOIN operation can also be specified

among multiple tables, leading to an n-way join. For example, consider the following three-way join:

This combines each project tuple with its controlling department tuple into a single tuple, and then

combines that tuple with an employee tuple that is the department manager. The net result is a

consolidated relation in which each tuple contains this project-department-manager combined

information.

In SQL, JOIN can be realized in several different ways

 - The first method is to specify the <join conditions> in the WHERE clause, along with any

other selection conditions.

 - The second way is to use a nested relation

 - Another way is to use the concept of joined tables

2.4.3 A Complete Set of Relational Algebra Operations

, ×} is a complete set; that is, any of the other

original relational algebra operations can be expressed as a sequence of operations from this set.

For example, the INTERSECTION operation can be expressed by using UNION and MINUS as

follows:

 R S R S) ((R S) (S R))

As another example, a JOIN operation can be specified as a CARTESIAN PRODUCT followed by a

SELECT operation,

https://vtucode.in

[BCS403]

Database Management System]

Similarly, a NATURAL JOIN can be specified as a CARTESIAN PRODUCT preceded by

RENAME and followed by SELECT and PROJECT operations. Hence, the various JOIN operations

are also not strictly necessary for the expressive power of the relational algebra.

2.4.4 The DIVISION Operation

The DIVISION operation, denoted by ÷, is useful for a special kind of query that sometimes occurs

in database applications. An example is Retrieve the names of employees who work on all the

 this query using the DIVISION operation, proceed

as follows.

relation SMITH_PNOS:

 Next, create a relation that includes a tuple <Pno, Essn> whenever the employee whose Ssn is

Essn works on the project whose number is Pno in the intermediate relation SSN_PNOS:

 Finally, apply the DIVISION operation to the two relations, which gives the desired

https://vtucode.in

[BCS403]

Database Management System]

In general, the DIVISION operation is applied to two relations R(Z) ÷ S(X), where the attributes of

R are a subset of the attributes of S; that is, X Z.Let Y be the set of attributes of R that are not

attributes of S; that is, Y = Z X (and hence Z = X Y). The result of DIVISION is a relation T(Y)

that includes a tuple t if tuples tR appear in R with tR [Y] = t, and with tR [X] = tS for every tuple tS in

S. This means that, for a tuple t to appear in the result T of t

Figure below illustrates a DIVISION operation where X = {A}, Y = {B}, and Z = {A, B}.

The tuples (values) b1 and b4 appear in R in combination with all three tuples in S; that is why they

appear in the resulting relation T. All other values of B in R do not appear with all the tuples in S and

are not selected: b2 does not appear with a2, and b3 does not appear with a1.

 operations as follows:

https://vtucode.in

[BCS403]

Database Management System]

2.4.5 Notation for Query Trees

Query tree (query evaluation tree or query execution tree) is used in relational systems to represent

queries internally. A query tree is a tree data structure that corresponds to a relational algebra

expression. It represents the input relations of the query as leaf nodes of the tree, and represents the

relational algebra operations as internal nodes.

An execution of the query tree consists of executing an internal node operation whenever its

operands represented by its child nodes are available, and then replacing that internal node by the

relation that results from executing the operation. The execution terminates when the root node is

executed and produces the result relation for the query.

https://vtucode.in

[BCS403]

Database Management System]

roject number, the controlling department

Leaf nodes P, D, and E represent the three relations PROJECT, DEPARTMENT, and EMPLOYEE.

The relational algebra operations in the expression are represented by internal tree nodes. The query

tree signifies an explicit order of execution in the following sense. The node marked (1) must begin

execution before node (2) because some resulting tuples of operation (1) must be available before

we can begin to execute operation (2). Similarly, node (2) must begin to execute and produce results

before node (3) can start execution, and so on.

A query tree gives a good visual representation and understanding of the query in terms of the

relational operations it uses and is recommended as an additional means for expressing queries in

relational algebra.

https://vtucode.in

[BCS403]

Database Management System]

2.5 Additional Relational Operations

2.5.1 Generalized Projection

The generalized projection operation extends the projection operation by allowing functions of

attributes to be included in the projection list. The generalized form can be expressed as:

 F1, F2, ..., Fn (R)

 where F1, F2, ..., Fn are functions over the attributes in relation R and may involve arithmetic

 operations and constant values.

 The generalized projection helpful when developing reports where computed values have to be

 produced in the columns of a query result. For example,consider the relation EMPLOYEE (Ssn,

 Salary,Deduction, Years_service). A report may be required to show

 Net Salary = Salary Deduction,

 Bonus = 2000 * Years_service, and

 Tax = 0.25 * Salary.

 generalized projection combined with renaming :

 (Ssn, Net_salary, Bonus, Tax) Ssn, Salary Deduction, 2000 *

 Years_service, 0.25 * Salary(EMPLOYEE)).

2.5.2 Aggregate Functions and Grouping

Aggregate functions are used in simple statistical queries that summarize information from the

database tuples.Common functions applied to collections of numeric values include

SUM,AVERAGE, MAXIMUM, and MINIMUM.The COUNT function is used for counting tuples

or values. For example, retrieving the average or total salary of all employees or the total number of

employee tuples.

Grouping the tuples in a relation by the value of some of their attributes and then applying an

aggregate function independently to each group. For example , group EMPLOYEE tuples by Dno, so

that each group includes the tuples for employees working in the same department. We can then list

each Dno value along with, say, the average salary of employees within the department, or the

number of employees who work in the department.

https://vtucode.in

[BCS403]

Database Management System]

Aggregate function operation can be defined by using the symbol (script F) :

 <grouping attributes> <function list> (R)

 Where ,

 <grouping attributes> : list of attributes of the relation specified in R

 <function list> : list of (<function> <attribute>) pairs.

 <function> - such as SUM, AVERAGE, MAXIMUM, MINIMUM,COUNT

 <attribute> is an attribute of the relation specified by R

The resulting relation has the grouping attributes plus one attribute for each element in the function

list.

Example: To retrieve each department number, the number of employees in the department, and

their average salary, while renaming the resulting attributes

R(Dno, No_of_employees, Average_sal)(Dno COUNT Ssn, AVERAGE Salary (EMPLOYEE))

2.5.3 Recursive Closure Operations

Recursive closure operation is applied to a recursive relationship between tuples of the same type,

such as the relationship between an employee and a supervisor.

Example : Retrieve all supervisees of an employee e at all levels that is, all employees e

supervised by e, all employees directly supervised by each employee e

directly supervised by each employee e

https://vtucode.in

[BCS403]

Database Management System]

To retrieve all employees supervised by Borg at level 2 that is, all employees supervised by

some employee who is directly supervised by Borg we can apply another JOIN to the result

of the first query, as follows:

UNION operation to the two results, as follows:

2.5.4 OUTER JOIN Operations

The JOIN operations match tuples that satisfy the join condition. For example, for a NATURAL

JOIN operation R * S, only tuples from R that have matching tuples in S and vice versa

appear in the result. Hence, tuples without a matching (or related) tuple are eliminated from the

https://vtucode.in

[BCS403]

Database Management System]

JOIN result. Tuples with NULL values in the join attributes are also eliminated.This type of join,

where tuples with no match are eliminated, is known as an inner join.

 A set of operations, called outer joins, were developed for the case where the user wants to keep

all the tuples in R, or all those in S, or all those in both relations in the result of the JOIN,

regardless of whether or not they have matching tuples in the other relation.

For example, suppose that we want a list of all employee names as well as the name of the

departments they manage if they happen to manage a department; if they do not manage one, we

can indicate it with a NULL value. We can apply an operation LEFT OUTER JOIN, denoted by

 to retrieve the result as follows:

The LEFT OUTER JOIN operation keeps every tuple in the first, or left, relation R in

 R S; if no matching tuple is found in S, then the attributes of S in the join result are

filled or padded with NULL values.

 A similar operation, RIGHT OUTER JOIN, denoted by

of R S.

 A third operation, FULL OUTER JOIN, denoted by , keeps all tuples in both the left
and the right relations when no matching tuples are found, padding them with NULL values as
needed.

2.5.5 The OUTER UNION Operation

The OUTER UNION operation was developed to take the union of tuples from two relations

that have some common attributes, but are not union (type) compatible.This operation will take

https://vtucode.in

[BCS403]

Database Management System]

the UNION of tuples in two relations R(X, Y) and S(X, Z) that are partially compatible,

meaning that only some of their attributes, say X, are union compatible.

The attributes that are union compatible are represented only once in the result, and those

attributes that are not union compatible from either relation are also kept in the result relation

T(X, Y, Z). Two tuples t1 in R and t2 in S are said to match if t1[X]= t2[X]. These will be

combined (unioned) into a single tuple in t. Tuples in either relation that have no matching tuple

in the other relation are padded with NULL values.

For example, an OUTER UNION can be applied to two relations whose schemas are:

 STUDENT(Name, Ssn, Department, Advisor)

 INSTRUCTOR(Name, Ssn, Department, Rank)

Tuples from the two relations are matched based on having the same combination of values of

the shared attributes Name, Ssn, Department. All the tuples from both relations are included in

the result, but tuples with the same (Name, Ssn, Department) combination will appear only once

in the result. Tuples appearing only in STUDENT will have a NULL for the Rank attribute,

whereas tuples appearing only in INSTRUCTOR will have a NULL for the Advisor attribute.

 A tuple that exists in both relations, which represent a student who is also an instructor, will

have values for all its attributes The resulting relation, STUDENT_OR_INSTRUCTOR, will

have the following attributes:

 STUDENT_OR_INSTRUCTOR(Name, Ssn, Department, Advisor, Rank)

2.6 Examples of Queries in Relational Algebra

Query 1. Retrieve the name and address of all employees who work for the

Query 2. controlling department

 address, and birth date.

https://vtucode.in

[BCS403]

Database Management System]

Query 3. Find the names of employees who work on all the projects controlled by department

number 5.

Query 4. Make a list of project numbers for projects that involve an employee whose last name is

 that controls the project.

Query 5. List the names of all employees with two or more dependents.

Query 6. Retrieve the names of employees who have no dependents.

Query 7. List the names of mana gers who have at least one dependent.

https://vtucode.in

[BCS403]

Database Management System]

Chapter 3: Mapping Conceptual Design into a Logical Design

3.1 Relational Database Design using ER-to-Relational mapping

 Procedure to create a relational schema from an Entity-Relationship (ER)

Fig 3.1: ER diagram of company database

Step 1: Mapping of Regular Entity Types

 For each regular entity type, create a relation R that includes all the simple attributes of E

 Include only the simple component attributes of a composite attribute

 Choose one of the key attributes of E as the primary key for R

 If the chosen key of E is a composite, then the set of simple attributes that form it will

together form the primary key of R.

https://vtucode.in

[BCS403]

Database Management System]

 If multiple keys were identified for E during the conceptual design, the information

describing the attributes that form each additional key is kept in order to specify secondary

(unique) keys of relation R

 In our example-COMPANY database, we create the relations EMPLOYEE, DEPARTMENT,

and PROJECT

 we choose Ssn, Dnumber, and Pnumber as primary keys for the relations EMPLOYEE,

DEPARTMENT, and PROJECT, respectively

 The relations that are created from the mapping of entity types are called entity relations

because each tuple represents an entity instance.

Step 2: Mapping of Weak Entity Types

 For each weak entity type, create a relation R and include all simple attributes of the entity

type as attributes of R

 Include primary key attribute of owner as foreign key attributes of R

 In our example, we create the relation DEPENDENT in this step to correspond to the weak

entity type DEPENDENT

 We include the primary key Ssn of the EMPLOYEE relation which corresponds to the

owner entity type as a foreign key attribute of DEPENDENT; we rename it as Essn

 The primary key of the DEPENDENT relation is the combination {Essn,Dependent_name},

because Dependent_name is the partial key of DEPENDENT

 It is common to choose the propagate (CASCADE) option for the referential triggered action

on the foreign key in the relation corresponding to the weak entity type, since a weak entity

has an existence dependency on its owner entity.

 This can be used for both ON UPDATE and ON DELETE.

https://vtucode.in

[BCS403]

Database Management System]

Step 3: Mapping of Binary 1:1 Relationship Types

 For each binary 1:1 relationship type R in the ER schema, identify the relations S and T that

correspond to the entity types participating in R

 There are three possible approaches:

 - foreign key approach

 - merged relationship approach

 - crossreference or relationship relation approach

 1. The foreign key approach

 Choose one of the relations S, say and include as a foreign key in S the primary key of T.

 It is better to choose an entity type with total participation in R in the role of S

 Include all the simple attributes (or simple components of composite attributes) of the 1:1

relationship type R as attributes of S.

 In our example, we map the 1:1 relationship type by choosing the participating entity type

DEPARTMENT to serve in the role of S because its participation in the MANAGES

relationship type is total

 We include the primary key of the EMPLOYEE relation as foreign key in the

DEPARTMENT relation and rename it Mgr_ssn.

 We also include the simple attribute Start_date of the MANAGES relationship type in the

DEPARTMENT relation and rename it Mgr_start_date

 2. Merged relation approach:

 merge the two entity types and the relationship into a single relation

 This is possible when both participations are total, as this would indicate that the two

tables will have the exact same number of tuples at all times.

3.Cross-reference or relationship relation approach:

 set up a third relation R for the purpose of cross-referencing the primary keys of the two

relations S and T representing the entity types.

 required for binary M:N relationships

 The relation R is called a relationship relation (or sometimes a lookup table), because each

tuple in R represents a relationship instance that relates one tuple from S with one tuple

from T

 The relation R will include the primary key attributes of S and T as foreign keys to S and T.

 The primary key of R will be one of the two foreign keys, and the other foreign key will be

a unique key of R.

https://vtucode.in

[BCS403]

Database Management System]

 The drawback is having an extra relation, and requiring an extra join operation when

combining related tuples from the tables.

 Step 4: Mapping of Binary 1:N Relationship Types

 For each regular binary 1:N relationship type R, identify the relation S that represents the

 participating entity type at the N-side of the relationship type.

 Include as foreign key in S the primary key of the relation T that represents the other entity

 type participating in R

 Include any simple attributes (or simple components of composite attributes) of the 1:N

 relationship type as attributes of S

 In our example, we now map the 1:N relationship types WORKS_FOR, CONTROLS, and

 SUPERVISION

 For WORKS_FOR we include the primary key Dnumber of the DEPARTMENT relation as

 foreign key in the EMPLOYEE relation and call it Dno.

 For SUPERVISION we include the primary key of the EMPLOYEE relation as foreign key

 in the EMPLOYEE relation itself because the relationship is recursive and call it

 Super_ssn.

 The CONTROLS relationship is mapped to the foreign key attribute Dnum of PROJECT,

 which references the primary key Dnumber of the DEPARTMENT relation.

 Step 5: Mapping of Binary M:N Relationship Types

 For each binary M:N relationship type

 Create a new relation S

 Include primary key of participating entity types as foreign key attributes in S

 Include any simple attributes of M:N relationship type

 In our example, we map the M:N relationship type WORKS_ON by creating the relation

 WORKS_ON.We include the primary keys of the PROJECT and EMPLOYEE relations as

 foreign keys in WORKS_ON and rename them Pno and Essn, respectively.

 We also include an attribute Hours in WORKS_ON to represent the Hours attribute of the

 relationship type.

 The primary key of the WORKS_ON relation is the combination of the foreign key

 attributes {Essn, Pno}.

https://vtucode.in

[BCS403]

Database Management System]

 The propagate (CASCADE) option for the referential triggered action should be specified

on the foreign keys in the relation corresponding to the relationship R, since each

relationship instance has an existence dependency on each of the entities it relates. This

can be used for both ON UPDATE and ON DELETE.

 Step 6: Mapping of Multivalued Attributes

 For each multivalued attribute

 Create a new relation

 Primary key of R is the combination of A and K

 If the multivalued attribute is composite, include its simple components

 In our example, we create a relation DEPT_LOCATIONS

 The attribute Dlocation represents the multivalued attribute LOCATIONS of

DEPARTMENT, while Dnumber as foreign key represents the primary key of the

DEPARTMENT relation.

 The primary key of DEPT_LOCATIONS is the combination of {Dnumber, Dlocation}

 A separate tuple will exist in DEPT_LOCATIONS for each location that a department has

 The propagate (CASCADE) option for the referential triggered action should be specified

on the foreign key in the relation R corresponding to the multivalued attribute for both ON

UPDATE and ON DELETE.

https://vtucode.in

[BCS403]

Database Management System]

 Step 7: Mapping of N-ary Relationship Types

 For each n-ary relationship type R

 Create a new relation S to represent R

 Include primary keys of participating entity types as foreign keys

 Include any simple attributes as attributes

 The primary key of S is usually a combination of all the foreign keys that reference the

 relations representing the participating entity types.

 For example, consider the relationship type SUPPLY.This can be mapped to the relation

 SUPPLY whose primary key is the combination of the three foreign keys {Sname,

 Part_no, Proj_name}.

Figure 3.2: Mapping the n-ary relationship type SUPPLY

https://vtucode.in

[BCS403]

