PG e Y AKSHAYA INSTITUTE OF

)
\s <
s=<§§>=e TECHNOLOGY
AKSﬂﬁ.ﬁ t‘ Lingapura, Tumkur-Koratagere Road, Tumkur-572106.
"20 \‘\‘

<« TUMKUR =

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Module 2 Notes for

“Database Management System”

[BCS403]

Prepared by: -

Mr. CHARAN S N

Assistant Professor, Department of CSE.
Akshaya Institute of Technology, Tumakuru

AKSHAYA INSTITUTE OF TECHNOLOGY

Lingapura, Obalapura Post, Koratagere Road, Tumakuru - 572106

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

MISSION

To empower the students to be technically M1: To achieve academic excellence by

competent, innovative and self-motivated with imparting in-depth and competitive knowledge
human values and contribute significantly to the students through effective teaching
pedagogies and hands on experience on cutting

edge technologies.

towards betterment of society and to respond

swiftly to the challenges of the changing world.
M2: To collaborate with industry and academia

for achieving quality technical education and
knowledge transfer through active participation

COMPUTEB N of all the stake holders. ’
> &ENGINEERING Ma3: To prepare students to be life-long learners
i and to upgrade their skills through Centre of
Excellence in the thrust areas of Computer

\ Science and Engineering.
STA

N

-~

%7 AKSHAYA &
B, Srererhon sisamiesy N

) TUMKUR &~

Program Specific Outcomes (PS0s) Program Educational Objectives (PEOS)

After Successful Completion of Computer Science

and Engineering Program Students will be able to PEO1: Graduates expose strong skills and

* Apply fundamental knowledge for professional abilities to work in industries and research
software development as well as to acquire new organizations.
skills.
Implement disciplinary knowledge in problem PEO3: Graduates engage in team work to
solving, analyzing and decision-making function as responsible professional with good
abilities through different domains like database ethical behavior and leadership skills.
management, networking, algorithms, and

programming as well as research and PEO3: Graduates engage in life-long learning

development. and innovations in multi disciplinary areas.
Make use of modern computer tools for creating

innovative career paths, to become an

entrepreneur or desire for higher studies. ’

Database Management System [BCS403]

Module 2

Chapter 1: The Relational Data Model

Introduction

The relational data model was first introduced by Ted Codd of IBM Research in 1970 in a classic
paper (Codd 1970), and it attracted immediate attention due to its simplicity and mathematical
foundation. The model uses the concept of a mathematical relation—which looks somewhat like a
table of values—as its basic building block, and has its theoretical basis in set theory and first-order
predicate logic.

The first commercial implementations of the relational model became available in the early 1980s,
such as the SQL/DS system on the MVS operating system by IBM and the Oracle DBMS. Since
then, the model has been implemented in a large number of commercial systems. Current popular
relational DBMSs (RDBMSs) include DB2 and Informix Dynamic Server (from IBM), Oracle and
Rdb (from Oracle), Sybase DBMS (from Sybase) and SQLServer and Access (from Microsoft). In

addition, several open source systems, such as MySQL and PostgreSQL, are available.

1.1 Relational Model Concepts

The relational model represents the database as a collection of relations. Informally, each relation
resembles a table of values or, to some extent, a flat file of records. It is called a flat file because
each record has a simple linear or flat structure.

When a relation is thought of as a table of values, each row in the table represents a collection of
related data values. A row represents a fact that typically corresponds to a real-world entity or
relationship. The table name and column names are used to help to interpret the meaning of the
values in each row.

For example, in STUDENT relation because each row represents facts about a particular student
entity. The column names—Name, Student number, Class, and Major—specify how to interpret the
data values in each row, based on the column each value is in. All values in a column are of the same
data type.

In the formal relational model terminology, a row is called a tuple, a column header is called an
attribute, and the table is called a relation. The data type describing the types of values that can

appear in each column is represented by a domain of possible values.

https:/Ivtucode.in Page 1

Database Management System [BCS403]

1.1.1 Domains, Attributes, Tuples, and Relations

Domain
A domain D is a set of atomic values. By atomic we mean that each value in the domain is
indivisible as far as the formal relational model is concerned. A common method of specifying
a domain is to specify a data type from which the data values forming the domain are drawn. It
is also useful to specify a name for the domain, to help in interpreting its values.
Some examples of domains follow:

= Usa_phone_numbers: The set of ten-digit phone numbers valid in the United States.

= Social_security_numbers: The set of valid nine-digit Social Security numbers.

= Names: The set of character strings that represent names of persons.

= Employee_ages. Possible ages of employees in a company; each must be an integer

value between 15 and 80.

The preceding are called logical definitions of domains. A data type or format is also specified
for each domain. For example, the data type for the domain Usa phone numbers can be
declared as a character string of the form (ddd)ddddddd, where each d is a numeric (decimal)
digit and the first three digits form a wvalid telephone area code. The data type for

Employee ages is an integer number between 15 and 80.

Attribute

An attribute A; is the name of a role played by some domain D in the relation schema R. D is

called the domain of A; and is denoted by dom(a;).

Tuple
Mapping from attributes to values drawn from the respective domains of those attributes. Tuples
are intended to describe some entity (or relationship between entities) in the miniworld
Example: atuple for a PERSON entity might be

{ Name --> “smith", Gender --> Male, Age --> 25 }

Relation

A named set of tuples all of the same form i.e., having the same set of attributes.

https:/Ivtucode.in Page 2

Relation Name

Database Management System [BCS403]

__— Attributes -—___

R TR
L - T — -
g / St =
— - R

dn,

STUDENT - St ST

Name Sen Home_ phone Address Office_phone | Age| Gpa

Benjamin Bayer | 305-61-2435 | (817)373-1616 | 2918 Bluebonnet Lane| NULL 19 | 3.21

Chung-cha Kim | 381-62-1245 | (817)375-4409 | 125 Kirby Road NULL 18 [2.89

Tuples L Dick Davidson | 422-11-2320 | NULL 3452 Elgin Road (817)749-1253 | 25 | 3.63
\\‘ Rohan Panchal | 489-22-1100 | (817)376-9821 | 265 Lark Lane (817)749-6492 | 28 | 3.93
Barbara Benson | 533-69-1238 | (817)839-8461 | 7384 Fontana Lane NULL 19 [3.25

Relation schema

A relation schema R, denoted by R(A1, Ao, ...,Ayn), is made up of a relation name R and a list
of attributes Ai, A, ...,An. Each attribute A; is the name of a role played by some domain D in
the relation schema R. D is called the domain of A; and is denoted by dom(A;). A relation
schema is used to describe a relation; R is called the name of this relation.

The degree (or arity) of a relation is the number of attributes n of its relation schema. A relation
of degree seven, which stores information about university students,would contain seven
attributes describing each student. as follows:

STUDENT(Name, Ssn, Home phone, Address, Office phone, Age, Gpa)
Using the data type of each attribute, the definition is sometimes written as:
STUDENT(Name: string, Ssn: string, Home phone: string, Address: string,
Office phone: string, Age: integer, Gpa: real)
Domains for some of the attributes of the STUDENT relation:
dom(Name) = Names; dom(Ssn) = Social security numbers;

dom(HomePhone)=USA phone numbers,dom(Office_phone)= USA phone numbers,

Relation (or relation state)

A relation (or relation state) r of the relation schema by R(A1, Ao, ...,An), also denoted by r(R),
is a set of n-tuples r = {t, t2, ..., tm}. Each n-tuple t is an ordered list of n values t =<vi, v, ...,
vn>, where each value vi, 1 <i<<n, is an element of dom (A;) or is a special NULL value. The i'"
value in tuple t, which corresponds to the attribute Aj, is referred to as t[A;i] or t. A;.

The terms relation intension for the schema R and relation extension for a relation state r(R)

are also commonly used.

https:/Ilvtucode.in Page 3

Database Management System [BCS403]

1.1.2 Characteristics of Relations

1. Ordering of Tuples in a Relation

A relation is defined as a set of tuples. Mathematically, elements of a set have no order
among them; hence, tuples in a relation do not have any particular order. Tuple ordering is
not part of a relation definition because a relation attempts to represent facts at a logical or
abstract level. Many tuple orders can be specified on the same relation.

2. Ordering of Values within a Tuple and an Alternative Definition of a Relation
The order of attributes and their values is not that important as long as the correspondence
between attributes and values is maintained. An alternative definition of a relation can be
given, making the ordering of values in a tuple unnecessary. In this definition A relation
schema R(A1, A, ...,An), set of attributes and a relation state r(R) is a finite set of mappings
r = {tl, t2, ..., tm}, where each tuple ti is a mapping from R to D.
According to this definition of tuple as a mapping, a tuple can be considered as a set of
(<attribute>, <value>) pairs, where each pair gives the value of the mapping from an attribute
Aj to a value vi from dom(A;) .The ordering of attributes is not important, because the
attribute name appears with its value.

3. Values and NULLSs in the Tuples
Each value in a tuple is atomic. NULL values are used to represent the values of attributes
that may be unknown or may not apply to a tuple. For example some STUDENT tuples have
NULL for their office phones because they do not have an office .Another student has a
NULL for home phone In general, we can have several meanings for NULL values, such as
value unknown, value exists but is not available, or attribute does not apply to this tuple
(also known as value undefined).

4. Interpretation (Meaning) of a Relation
The relation schema can be interpreted as a declaration or a type of assertion. For example,
the schema of the STUDENT relation of asserts that, in general, a student entity has a Name,
Ssn, Home phone, Address, Office phone, Age, and Gpa. Each tuple in the relation can then
be interpreted as a particular instance of the assertion.For example, the first tuple asserts the
fact that there is a STUDENT whose Name is Benjamin Bayer, Ssn is 305-61-2435, Age is

19, and so on.

An alternative interpretation of a relation schema is as a predicate; in this case, the values in

each tuple are interpreted as values that satisfy the predicate.

https:/ivtucode.in Page 4

Database Management System [BCS403]

1.1.3 Relational Model Notation

Relation schema R of degree n is denoted by by R(A1, Ao, ...,An)

Uppercase letters Q, R, S denote relation names

Lowercase letters q, 1, s denote relation states

Letters t, u, v denote tuples

In general, the name of a relation schema such as STUDENT also indicates the current set of
tuples in that relation

An attribute A can be qualified with the relation name R to which it belongs by using the dot
notation R.A—for example, STUDENT.Name or STUDENT.Age.

An n-tuple ¢ in a relation »(R) is denoted by ¢ = <vi, 2, ..., V>, where v; is the value
corresponding to attribute A;. The following notation refers to component values of tuples:
Both #[4;] and ¢.4; (and sometimes ¢[{]) refer to the value v; in ¢ for attribute 4;.

Both #{[Au, Aw, ..., Az] and t.(4u, Aw, ..., Az), where Ay, Aw, ..., Az 1s a list of attributes from R,
refer to the subtuple of values <v., v, ..., v=> from ¢ corresponding to the attributes specified

n the list.

1.2 Relational Model Constraints and Relational Database Schemas

Constraints are restrictions on the actual values in a database state. These constraints are
derived from the rules in the miniworld that the database represents. Constraints on databases
can generally be divided into three main categories:

1. Inherent model-based constraints or implicit constraints

e Constraints that are inherent in the data model.
e The characteristics of relations are the inherent constraints of the relational model and
belong to the first category. For example, the constraint that a relation cannot have

duplicate tuples is an inherent constraint.

2. Schema-based constraints or explicit constraints

o Constraints that can be directly expressed in schemas of the data model, typically
by specifying them in the DDL.
e The schema-based constraints include domain constraints, key constraints, constraints
on NULLSs, entity integrity constraints, and referential integrity constraints.
3. Application-based or semantic constraints or business rules
o Constraints that cannot be directly expressed in the schemas of the data model, and

hence must be expressed and enforced by the application programs.

https:livtucode.in Page 5

Database Management System [BCS403]

e Examples of such constraints are the salary of an employee should not exceed the
salary of the employee’s supervisor and the maximum number of hours an employee

can work on all projects per week is 56.

1.2.1 Domain Constraints
Domain Constraints specify that within each tuple, the value of each attribute A must be
an atomic value from the domain dom(A). The data types associated with domains
typically include standard numeric data types for integers (such as short integer, integer,
and long integer) and real numbers (float and doubleprecision float). Characters,
Booleans, fixed-length strings, and variable-length strings are also available, as are date,

time, timestamp, and money, or other special data types.

1.2.2 Key Constraints and Constraints on NULL Values
All tuples in a relation must also be distinct.This means that no two tuples can have the
same combination of values for all their attributes.There are other subsets of attributes of
a relation schema R with the property that no two tuples in any relation state » of R should
have the same combination of values for these attributes.
Suppose that we denote one such subset of attributes by SK; then for any two distinct
tuples 71 and 2 in a relation state » of R, we have the constraint that: #[SK]# #[SK] .

such set of attributes SK is called a superkey of the relation schema R

superkey

A superkey SK specifies a uniqueness constraint that no two distinct tuples in any state » of
R can have the same value for SK. Every relation has at least one default superkey—the set

of all its attributes.

Key

A key K of a relation schema R is a superkey of R with the additional property that
removing any attribute 4 from K leaves a set of attributes K’ that is not a superkey of R
anymore. Hence, a key satisfies two properties:

1. Two distinct tuples in any state of the relation cannot have identical values for (all) the

attributes in the key. This first property also applies to a superkey.

https:/ivtucode.in Page 6

Database Management System [BCS403]

2. It is a minimal superkey—that is, a superkey from which we cannot remove any

attributes and still have the uniqueness constraint in condition 1 hold.This property is

not required by a superkey.

Example: Consider the STUDENT relation

Relation Name

e o T
+ —___’__/./"" S _\ “—--______-:__:::::-H_E-_
STUDENT _ — o \ _—

__— Attributes —____

—
Name Ssn Home_phone Address Office_phone | Age| Gpa
Benjamin Bayer | 305-61-2435 | (817)373-1616 | 2918 Bluebonnet Lane | NULL 19 | 3.21
/ Chung-cha Kim | 381-62-1245 | (817)375-4409 | 125 Kirby Road NULL 18 | 2.89
Tuples Z\: Dick Davidson |422-11-2320| NULL 3452 Elgin Road (817)749-1253 | 25 | 3.53
\ Rohan Panchal | 489-22-1100| (817)376-9821 | 265 Lark Lane (817)749-6492 | 28 | 3.93
Barbara Benson | 533-69-1238 | (817)839-8461 | 7384 Fontana Lane NULL 19 [3.25

e The attribute set {Ssn} is a key of STUDENT because no two student tuples can
have the same value for Ssn

e Any set of attributes that includes Ssn—for example, {Ssn, Name, Age}—is a
superkey

e The superkey {Ssn, Name, Age} is not a key of STUDENT because removing

Name or Age or both from the set still leaves us with a superkey

In general, any superkey formed from a single attribute is also a key. A key with multiple

attributes must require al// its attributes together to have the uniqueness property.

Candidate key
A relation schema may have more than one key. In this case, each of the keys is called a
candidate key. For example, the CAR relation has two candidate keys: License number and

Engine serial number

CAR

| License_number | Engine_serial_number | Make Model | Year

| Texas ABC-739 AB9352 Ford Mustang | 02

| Florida TVP-347 B43696 Oldsmobile | Cutlass | 05
New York MPO-22 X83554 Oldsmobile | Delta 01
California 432-TFY C43742 Mercedes | 190-D 99
California RSK-629 Y82935 Toyota Camry 04

| Texas RSK-629 U028365 Jaguar XJS 04

https:/lvtucode.in Page 7

Database Management System [BCS403]

Primary key
It is common to designate one of the candidate keys as the primary key of the relation. This
is the candidate key whose values are used to identify tuples in the relation.We use the
convention that the attributes that form the primary key of a relation schema are underlined.

Other candidate keys are designated as unique keys and are not underlined

Another constraint on attributes specifies whether NULL values are or are not permitted. For
example, if every STUDENT tuple must have a valid, non-NULL value for the Name attribute, then
Name of STUDENT is constrained to be NOT NULL.

1.2.3 Relational Databases and Relational Database Schemas
A Relational database schema S is a set of relation schemas § = {Ri1, Ra, ..., R} and a s et
of integrity constraints IC.
Example of relational database schema:
COMPANY = {EMPLOYEE, DEPARTMENT, DEPT LOCATIONS, PROJECT,
WORKS ON, DEPENDENT}

EMPLOYEE
| Fname | Minit | Lname | Ssn | Bdate \| Address [eender | Salary | Super_ ssn| Dno |

DEPARTMENT
I Dname | Dnumber ng(_ssn| Mgr_start_datel

DEPT_LOCATIONS
| Dnumber I Dlocation |

PROJECT
Iiname I Pnumber l Plocation I Dnum

WORKS_ON
| Essn | Pno | Hours |

DEPENDENT
| Essn | Dependent name | gender| Bdate | Relationship |

Figurel.2.3 (a): Schema diagram for the COMPANY relational database schema.

The underlined attributes represent primary keys

A Relational database state is a set of relation states DB = {ry, r2, ..., ¥m}.Each r; is a state of

R and such that the r; relation states satisfy integrity constraints specified in IC.

https:/ivtucode.in Page 8

Database Management System [BCS403]

EMPLOYEE
Fname | Minit [Lname Ssn Bdate Address Lende' Salary | Super_ssn | Dno
John B Smith 123456789 | 1965-01-09 | 731 Fondren, Houston, TX| M [30000 [333445555 | 5
Franklin T Wong | 333445555 | 1955-12-08 | 638 Voss, Houston, TX M |40000 (888665555 | 5
Alicia J Zelaya | 999887777 | 1968-01-19 | 3321 Castle, Spring, TX F |25000 |987654321 4
Jennifer | S | Wallace | 987654321 | 1941-06-20 | 291 Berry, Bellaire, TX F |43000 |888665555 | 4
Ramesh | K Narayan | 666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX| M |38000 [333445555 (5
Joyce A English | 4563453453 | 1972-07-31 | 5631 Rice, Houston, TX F |25000 (333445555 | 5
Ahmad Vv Jabbar | 987987987 | 1969-03-29 | 980 Dallas, Houston, TX | M |25000 [987654321 4
James E |Borg 888665555 | 1937-11-10 | 450 Stone, Houston, TX | M |55000 (NULL 1
DEPARTMENT
DEPT_LOCATIONS
Dname Dnumber Mgr_ssn Mgr_start date e
— . Dnumber Diocation
Research 5 333445555 1888-05-22 : " :
Adrministration 4 88765431 1895-01-04 Riethl
Stafford
Headquarters i BBBEBSSES 1981-06-19
8 Bellaira
WORKS_ON 5 Sugarland
Es=n Pro Hiiea] Houston
123456789 1 325 PROJECT
123456789 9 75 Pname ',Pl"fl.li'ﬁbﬂr Plocation Dinum
BREERB4444 3 40.0 ProductX 1 Bellaire B
453453453 i 20.0 | ProductY 2 Sugarland b
453453453 | 2 | 200 | ot A |Howkn #
333445555 9 100 Computerization 10 Stafford 4
Recrganization 20 Houston 1
333445555 9 100 :
Mewbeneafits a0 Stafford 4
333445555 10 100
3334455565 20 100
DEPENDENT
999887777 30 300 Essn Dependent_name |zendel Bdate Relationship
999887777 10 | 100 333445555 | Alice F | 1986:04.05 | Daughter
987987987 10 | 350 333445555 | Theodore M | 1983-10-25 | Son
OR7O8BT98T a0 50 333445555 Joy F 1958-05-03 | Spouse
987654321 30 20.0 987654321 Abner M 1942-02-28 | Spouse
S o pri 123456789 Michael M | 1988-01-04 | Son
- 123456789 Alice F 1888-12-30 | Daughter
BBBE65555 20 | NULL 123456789 | Elizabeth F | 1967-0505 | Spouse

Figure 1.2.3(b) :One possible database state for the COMPANY relational database schema.

https:/ivtucode.in

Page 9

Database Management System [BCS403]

A database state that does not obey all the integrity constraints is called Invalid state and a state that

satisfies all the constraints in the defined set of integrity constraints IC is called a Valid state

Attributes that represent the same real-world concept may or may not have identical names in
different relations. For example, the Dnumber attribute in both DEPARTMENT and
DEPT_LOCATIONS stands for the same real-world concept—the number given to a department.
That same concept is called Dno in EMPLOYEE and Dnum in PROJECT.

Alternatively, attributes that represent different concepts may have the same name in different
relations. For example, we could have used the attribute name Name for both Pname of PROJECT
and Dname of DEPARTMENT; in this case, we would have two attributes that share the same name

but represent different realworld concepts—project names and department names.

1.2.4 Integrity, Referential Integrity, and Foreign Keys

Entity integrity constraint

The entity integrity constraint states that no primary key value can be NULL. This is because the
primary key value is used to identify individual tuples in a relation. Having NULL values for the
primary key implies that we cannot identify some tuples. For example, if two or more tuples had
NULL for their primary keys, we may not be able to distinguish them if we try to reference them
from other relations.

Key constraints and entity integrity constraints are specified on individual relations.

Referential integrity constraint

The referential integrity constraint is specified between two relations and is used to maintain the
consistency among tuples in the two relations. Informally, the referential integrity constraint states
that a tuple in one relation that refers to another relation must refer to an existing tuple in that
relation.

For example COMPANY database, the attribute Dno of EMPLOYEE gives the department number
for which each employee works; hence, its value in every EMPLOYEE tuple must match the
Dnumber value of some tuple in the DEPARTMENT relation.

https:/Ivtucode.in Page 10

- Database Management System [BCS403]

To define referential integrity more formally, first we define the concept of a foreign key. The
conditions for a foreign key, given below, specify a referential integrity constraint between the two
relation schemas R and R».
A set of attributes FK in relation schema R is a foreign key of R; that references relation R> if it
satisfies the following rules:
1. Attributes in FK have the same domain(s) as the primary key attributes PK of R»; the
attributes FK are said to reference or refer to the relation R».
2. A value of FK in a tuple # of the current state »1(R1) either occurs as a value of PK for

some tuple # in the current state 72(R2) or is NULL.
In the former case, we have #[FK] = £[PK], and we say that the tuple #i references or refers to the
tuple .
In this definition, R; is called the referencing relation and R is the referenced relation. If these

two conditions hold, a referential integrity constraint from R; to R is said to hold.

1.2.5 Other Types of Constraints

Semantic integrity constraints

Semantic integrity constraints can be specified and enforced within the application programs that
update the database, or by using a general-purpose constraint specification language. Examples of
such constraints are the salary of an employee should not exceed the salary of the employee’s
supervisor and the maximum number of hours an employee can work on all projects per week is 56.
Mechanisms called triggers and assertions can be used. In SQL, CREATE ASSERTION and
CREATE TRIGGER statements can be used for this purpose.

Functional dependency constraint
Functional dependency constraint establishes a functional relationship among two sets of attributes X
and Y. This constraint specifies that the value of X determines a unique value of Y in all states of a
relation; it is denoted as a functional dependency X — Y. We use functional dependencies and other
types of dependencies as tools to analyze the quality of relational designs and to “normalize”
relations to improve their quality.
State constraints(static constraints)

Define the constraints that a valid state of the database must satisfy
Transition constraints(dynamic constraints)

Define to deal with state changes in the database

https:/ivtucode.in Page 11

- Database Management System [BCS403]

1.3 Update Operations, Transactions, and Dealing with Constraint Violations
The operations of the relational model can be categorized into retrievals and updates
There are three basic operations that can change the states of relations in the database:
1. Insert - used to insert one or more new tuples in a relation
2. Delete- used to delete tuples
3. Update (or Modify)- used to change the values of some attributes in existing tuples
Whenever these operations are applied, the integrity constraints specified on the relational database

schema should not be violated.

1.3.1 The Insert Operation
The Insert operation provides a list of attribute values for a new tuple ¢ that is to be inserted into a

elation R. Insert can violate any of the four types of constraints

1. Domain constraints : if an attribute value is given that does not appear in the corresponding
domain or is not of the appropriate data type

2. Key constraints : if a key value in the new tuple # already exists in another tuple in the
relation #(R)

3. Entity integrity: if any part of the primary key of the new tuple # is NULL

4. Referential integrity : if the value of any foreign key in ¢ refers to a tuple that does not exist

in the referenced relation

Examples:
1. Operation:
Insert <*Cecilia’, ‘F’, “Kolonsky’, NULL, ‘1960-04-05°, ‘6357 Windy Lane, Katy, TX’,
F, 28000, NULL, 4>
Result: This insertion violates the entity integrity constraint (NULL for the primary key
Ssn), so it is rejected
2. Operation:
Insert <*Alicia’, ‘J’, ‘Zelaya’, ‘999887777°, ‘1960-04-05°, ‘6357 Windy Lane, Katy, TX’,
F, 28000, ‘987654321°, 4>
Result: This insertion violates the key constraint because another tuple with the same Ssn
value already exists in the EMPLOYEE relation, and so it is rejected.
3.Operation:
Insert <*Cecilia’, ‘F’, ‘Kolonsky’, ‘677678989, 1960-04-05°, 6357 Windswept, Katy,
TX’, F, 28000, ‘987654321°, 7>

https:/Ilvtucode.in Page 12

Database Management System [BCS403]

Result: This insertion violates the referential integrity constraint specified on Dno in
EMPLOYEE because no corresponding referenced tuple exists in DEPARTMENT
with Dnumber = 7.
4. Operation:
Insert <*Cecilia’, ‘F’, ‘Kolonsky’, ‘677678989, ‘1960-04-05°, ‘6357 Windy Lane,Katy,
TX, F, 28000, NULL, 4>

Result: This insertion satisfies all constraints, so it is acceptable.

If an insertion violates one or more constraints, the default option is to reject the insertion.It would
be useful if the DBMS could provide a reason to the user as to why the insertion was rejected.

Another option is to an attempt to correct the reason for rejecting the insertion

1.3.2 The Delete Operation
The Delete operation can violate only referential integrity. This occurs if the tuple being deleted is
referenced by foreign keys from other tuples in the database. To specify deletion, a condition on the
attributes of the relation selects the tuple (or tuples) to be deleted.
Examples:
1. Operation:
Delete the WORKS ON tuple with Essn = *999887777° and Pno =10.
Result: This deletion is acceptable and deletes exactly one tuple.
2. Operation:

Delete the EMPLOYEE tuple with Ssn = ‘999887777°.

Result: This deletion is not acceptable, because there are tuples in WORKS ON that refer
to this tuple. Hence, if the tuple in EMPLOYEE is deleted, referential integrity
violations will result.

3. Operation:
Delete the EMPLOYEE tuple with Ssn = “333445555°
Result: This deletion will result in even worse referential integrity violations, because the
tuple involved is referenced by tuples from the EMPLOYEE, DEPARTMENT,
WORKS ON, and DEPENDENT relations.
Several options are available if a deletion operation causes a violation
1. restrict - is to reject the deletion
2. cascade, is to attempt to cascade (or propagate) the deletion by deleting tuples that reference

the tuple that is being deleted

https:/lvtucode.in Page 13

- Databasc Management System [BCS403]

3. Set null or set default - is to modify the referencing attribute values that cause the violation;

each such value is either set to NULL or changed to reference another default valid tuple.

1.3.3 The Update Operation
The Update (or Modify) operation is used to change the values of one or more attributes in a tuple
(or tuples) of some relation R. It is necessary to specify a condition on the attributes of the relation
to select the tuple (or tuples) to be modified.
Examples:
1. Operation:
Update the salary of the EMPLOYEE tuple with Ssn= ‘999887777 to 28000.
Result: Acceptable.
2. Operation:
Update the Dno of the EMPLOYEE tuple with Ssn = ‘999887777 to 7.
Result: Unacceptable, because it violates referential integrity.
3. Operation:
Update the Ssn of the EMPLOYEE tuple with Ssn = 999887777 to ‘987654321°.
Result: Unacceptable, because it violates primary key constraint by repeating a value
that already exists as a primary key in another tuple; it violates referential integrity
constraints because there are other relations that refer to the existing value of Ssn
Updating an attribute that is neither part of a primary key nor of a foreign key usually causes no
problems; the DBMS need only check to confirm that the new value is of the correct data type and

domain.

1.3.4 The Transaction Concept

A transaction is an executing program that includes some database operations, such as reading from
the database, or applying insertions, deletions, or updates to the database. At the end of the
transaction, it must leave the database in a valid or consistent state that satisfies all the constraints
specified on the database schema A single transaction may involve any number of retrieval
operations and any number of update operations. These retrievals and updates will together form an
atomic unit of work against the database.For example, a transaction to apply a bank withdrawal will
typically read the user account record, check if there is a sufficient balance, and then update the

record by the withdrawal amount.

https:/lvtucode.in Page 14

Database Management System [BCS403]

Chapter 2: Relational Algebra

2.1 Introduction

Relational algebra is the basic set of operations for the relational model. These operations enable a
user to specify basic retrieval requests as relational algebra expressions. The result of an operation is
a new relation, which may have been formed from one or more input relations.

The relational algebra is very important for several reasons

o First, it provides a formal foundation for relational model operations.

e Second, and perhaps more important, it is used as a basis for implementing and optimizing
queries in the query processing and optimization modules that are integral parts of
relational database management systems (RDBMSs)

e Third, some of its concepts are incorporated into the SQL standard query language for

RDBMSs

2.2 Unary Relational Operations: SELECT and PROJECT

2.2.1 The SELECT Operation

The SELECT operation denoted by o (sigma) is used to select a subset of the tuples from a relation
based on a selection condition. The selection condition acts as a filter that keeps only those tuples
that satisfy a qualifying condition. Alternatively, we can consider the SELECT operation to restrict
the tuples in a relation to only those tuples that satisfy the condition.

The SELECT operation can also be visualized as a horizontal partition of the relation into two sets
of tuples—those tuples that satisfy the condition and are selected, and those tuples that do not satisfy
the condition and are discarded.

In general, the select operation is denoted by

O <selection conditi0n>(R)

where,

the symbol o is used to denote the select operator

the selection condition is a Boolean (conditional) expression specified on the attributes of

relation R

tuples that make the condition true are selected

* appear in the result of the operation

tuples that make the condition false are filtered out

* discarded from the result of the operation

https:/ivtucode.in Page 15

Database Management System [BCS403]

The Boolean expression specified in <selection condition> is made up of a number of clauses of the
form:

<attribute name> <comparison op> <constant value>
or

<attribute name> <comparison op> <attribute name>
where

<attribute name> is the name of an attribute of R,
<comparison op> is one of the operators {=, <, < >, >, #}, and
<constant value> is a constant value from the attribute domain

Clauses can be connected by the standard Boolean operators and, or, and not to form a general
selection condition

Examples:
1. Select the EMPLOYEE tuples whose department number is 4.
6 pno-4 (EMPLOYEE)
2. Select the employee tuples whose salary is greater than $30,000.
G SALARY >30,000 (EMPLOYEE)

3. Select the tuples for all employees who either work in department 4 and make over $25,000
per year, or work in department 5 and make over $30,000

G(Dno=4 AND Salary>25000) OR (Dno=5 AND salary>30000((EMPLOYEE)
The result of a SELECT operation can be determined as follows:

The <selection condition> is applied independently to each individual tuple t in R

If the condition evaluates to TRUE, then tuple ¢ is selected.All the selected tuples appear in
the result of the SELECT operation

The Boolean conditions AND, OR, and NOT have their normal interpretation, as follows:

- (condl AND cond2) is TRUE if both (cond1) and (cond2) are TRUE; otherwise, it is
FALSE.

- (cond1 OR cond2) is TRUE if either (condl) or (cond2) or both are TRUE; otherwise, it is
FALSE.

- (NOT cond) is TRUE if cond is FALSE; otherwise, it is FALSE.

https:/Ilvtucode.in Page 16

Database Management System [BCS403]

The SELECT operator is unary; that is, it is applied to a single relation. The degree of the relation
resulting from a SELECT operation is the same as the degree of R.The number of tuples in the
resulting relation is always less than or equal to the number of tuples in R. That is,
loc (R)| <|R| for any condition C
The fraction of tuples selected by a selection condition is referred to as the selectivity of the
condition.
The SELECT operation is commutative; that is,
G<cond1>(G<cona2>(R)) = 6<cond2>(G<cond1>(R))

Hence, a sequence of SELECTSs can be applied in any order.we can always combine a cascade (or
sequence) of SELECT operations into a single SELECT operation with a conjunctive (AND)
condition; that is,

G<condi>(6<cond2>(...(6<condn>(R)) ...)) = 6<condi> AND<conaz> AND <.« AND <condn>(R)
In SQL, the SELECT condition is specified in the WHERE clause of a query.For example, the
following operation:

6Dno=4 AND satary>25000 (EMPLOYEE)
would to the following SQL query:

SELECT * FROM EMPLOYEE WHERE Dno=4 AND Salary>25000;

2.2.2 The PROJECT Operation

The PROJECT operation denoted by « (pi) selects certain columns from the table and discards the
other columns. Used when we are interested in only certain attributes of a relation. The result of the
PROJECT operation can be visualized as a vertical partition of the relation into two relations:

- one has the needed columns (attributes) and contains the result of the operation

- the other contains the discarded columns

The general form of the PROJECT operation is

Ti<attribute list>(IR)
where
7 (pi) - symbol used to represent the PROJECT operation,
<attributelist> - desired sublist of attributes from the attributes of relation R.
The result of the PROJECT operation has only the attributes specified in <attribute list> in the same
order as they appear in the list. Hence, its degree is equal to the number of attributes in <attribute

list>

https:/Ilvtucode.in Page 17

Database Management System [BCS403]

Example :

1. To list each employee’s first and last name and salary we can use the PROJECT operation as
follows:

TTLname, Fname, Salary(EMPLOYEE)

If the attribute list includes only nonkey attributes of R, duplicate tuples are likely to
occur. The result of the PROJECT operation is a set of distinct tuples, and hence a valid
relation. This is known as duplicate elimination.For example, consider the following
PROJECT operation:

Ttgender, Salary(EMPLOYEE)

Lname Frname Salary
Smith lohn 30000
Wong Franklin | 40000
Zelaya Alicia 25000
Wallace | Jennifer | 43000
MNarayan | Ramesh | 38000
English | Joyce 25000
Jabbar Ahmad 25000
Barg James 55000

The tuple <°F’, 25000> appears only once in resulting relation even though this combination of
values appears twice in the EMPLOYEE relation.
The number of tuples in a relation resulting from a PROJECT operation is always less than or equal
to the number of tuples in R. Commutativity does not hold on PROJECT
A<iistt> (T<iisiz>(R)) = A<iisti>(R)
as long as <list2> contains the attributes in <list1>; otherwise, the lefi-hand side is an incorrect

expression.

In SQL, the PROJECT attribute list is specified in the SELECT clause of a query. For example, the
following operation:

Tlgender, Salary(EMPLOYEE)

would correspond to the following SQL query:
SELECT DISTINCT gender, Salary FROM EMPLOYEE

https:/Ivtucode.in Page 18

Database Management System [BCS403]

2.2.3 Sequences of Operations and the RENAME Operation

For most queries, we need to apply several relational algebra operations one after the other. Either
we can write the operations as a single relational algebra expression by nesting the operations, or we
can apply one operation at a time and create intermediate result relations. In the latter case, we must
give names to the relations that hold the intermediate results.

For example, to retrieve the first name, last name, and salary of all employees who work in
department number 5, we must apply a SELECT and a PROJECT operation. We can write a single

relational algebra expression, also known as an in-line expression, as follows:
TTFname, Lname, Salary(GDn0=5(EMPLOYEE))

Alternatively, we can explicitly show the sequence of operations, giving a name to each intermediate
relation, as follows:
DEPS_EMPS < 6 pno-s(EMPLOYEE)
RESULT < Ztrname, Lname, salary(DEP5_EMPS)
We can also use this technique to rename the attributes in the intermediate and result relations. To
rename the attributes in a relation, we simply list the new attribute names in parentheses
TEMP < 6pno-s(EMPLOYEE)

R(First_name, Last_name, Salary) < Trname, Lname, salary(TEMP)

TEMP
Fname | Minit | Lname Ssn Bdate Address Sex | Salary | Super ssn |Dno
John B | Smith | 123456789 | 1965-04-09 | 731 Fondren, Houston TX | M | 30000 | 333445555 | &
Frankiin [T | Wong | 333445555 | 1955-12-08 | 638 Voss, Houston, TX M | 40000 |BBBEBESS5S | 5
Ramesh | K | Narayan | 666884444 [1862-08-15 | 875 Fire Oak, Humble TX | M | 3B000 | 333445565 | 5
Joyce A | English | 453453453 | 19720731 | 5631 Rice, Houston, TX | F | 25000 [333445555 | 5
R
First name | Last name | Salary
John Smith 30000

Franklin Wang 40000

Ramesh Narayan | 38000
Joyce English 25000

If no renaming is applied, the names of the attributes in the resulting relation of a SELECT operation
are the same as those in the original relation and in the same order.For a PROJECT operation with no
renaming, the resulting relation has the same attribute names as those in the projection list and in the
same order in which they appear in the list.

We can also define a formal RENAME operation—which can rename either the relation name or the

attribute names, or both—as a unary operator.

https:/Ivtucode.in Page 19

Database Management System [BCS403]

The general RENAME operation when applied to a relation R of degree # is denoted by any of the
following three forms:

1. psi, 82, ..., 8n)(R) p (rho) — RENAME operator
2. pS(R) S — new relation name
3. pa1,B2.....Bny(R) B1,Bs,.....By- new attribute names

The first expression renames both the relation and its attributes. Second renames the relation only
and the third renames the attributes only.If the attributes of R are (A1, Az, ..., An) in that order, then
each A; is renamed as Bi.

Renaming in SQL is accomplished by aliasing using AS, as in the following example:
SELECT E.Fname AS First_name,
E.Lname AS Last_name,
E.Salary AS Salary
FROM EMPLOYEE AS E
WHERE E.Dno=5,

2.3 Relational Algebra Operations from Set Theory
2.3.1 The UNION, INTERSECTION, and MINUS Operations

= UNION: The result of this operation, denoted by R U S, is a relation that includes all tuples
that are either in R or in S or in both R and S. Duplicate tuples are eliminated.

= INTERSECTION: The result of this operation, denoted by R N S, is a relation that includes
all tuples that are in both R and S.

= SET DIFFERENCE (or MINUS): The result of this operation, denoted by R — S, is a
relation that includes all tuples that are in R but not in S.

Example: Consider the the following two relations: STUDENT & INSTRUCTOR

STUDENT INSTRUCTOR
Fn Ln Fname Lname

Susan Yao John Smith
Ramesh | Shah Ricardo | Browne
Johnny Kohler Susan Yao
Barbara | Jones Francis | Johnson
Amy Ford Ramesh | Shah
Jimmy Wang
Ernest Gilbert

https:/Ilvtucode.in Page 20

Database Management System [BCS403]

STUDENT u INSTRUCTOR
Fn Ln
Susan Yao
Ramesh | Shah
Johnny Kohler
Barbara | Jones
Amy Ford
Jimmy Wang
Emest Gilbert
John Smith
Ricardo | Browne
Francis | Johnson

STUDENT — INSTRUCTOR

Fn Ln
Johnny Kohler
Barbara | Jones
Amy Ford
Jimmy Wang
Emest Gilbert

STUDENT N INSTRUCTOR

Fn Ln
Susan | Yao
Ramesh | Shah

INSTRUCTOR — STUDENT

 Fname Lname
John Smith
Ricardo | Browne
Francis | Johnson

Example: To retrieve the Social Security numbers of all employees who either work in department 5

or directly supervise an employee who works in department 5

DEP5_EMPS « 6pno-s(EMPLOYEE)

RESULTI « msw(DEP5_EMPS)

RESULT «— RESULTI U RESULT2

EMPLOYEE
Fname | Minit [Lname Ssn Bdate Address fgende Salary | Super_ssn | Dno
John B | Smith | 123456789 | 1965-01-09 |731 Fondren, Houston, TX| M |[30000 |333445555 | 5
Frankiin | T Wong | 333445555 | 1955-12-08 | 638 Voss, Houston, TX M |[40000 |888665555 | 5
Alicia J Zelaya | 999887777 | 1968-01-19 | 3321 Castle, Spring, TX F |25000 |987654321 -
Jennifer | S | Wallace | 987654321 | 1941-06-20 | 291 Berry, Bellaire, TX F |43000 (888665555 | 4
Ramesh | K | Narayan | 666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX | M (38000 333445555 | 5
Joyce A | English | 453453453 | 1972-07-31 | 5631 Rice, Houston, TX | F [25000 |333445555 | 5
Ahmad V | Jabbar | 987987987 |1969-03-29 [980 Dallas, Houston, TX | M |25000 |987654321 -
James E |Borg 888665555 | 1937-11-10 | 450 Stone, Houston, TX | M |55000 [NULL 1 Page 21

https:/ivtucode.in

- Database Management System [BCS403]

RESULTAH RESULT2 RESULT

Ssn Ssn Ssn
123456780 833445555 123456789
333445555 B8B66D5D5D 333445055
666884444 666884444
453453453 453453453
B8BB665D05

Single relational algebra expression:
Result < 7ssn (6pno=s (EMPLOYEE)) U 7tsuper_ssn (6pno=5 (EMPLOYEE))

UNION, INTERSECTION and SET DIFFERENCE are binary operations; that is, each is applied to
two sets (of tuples). When these operations are adapted to relational databases, the two relations on
which any of these three operations are applied must have the same type of tuples; this condition has
been called union compatibility or type compatibility.

Two relations R(Ai1, Az, ..., An) and S(B1, B, ..., Bn) are said to be union compatible (or type
compatible) if they have the same degree n and if dom(A;) = dom(B;) for 1 <i < n.This means that
the two relations have the same number of attributes and each corresponding pair of attributes has
the same domain.

Both UNION and INTERSECTION are commutative operations; that is,
RUS=SURandRNS=SNR

Both UNION and INTERSECTION can be treated as n-ary operations applicable to any number of
relations because both are also associative operations, that is,

RUSUDND=RUS)UTand(RNS)NT=RNESNT)
The MINUS operation is not commutative; that is, in general,
R-S#S—R
INTERSECTION can be expressed in terms of union and set difference as follows:
RNS=(RUS)-(R=S))-(S—-R)

In SQL, there are three operations—UNION, INTERSECT, and EXCEPT—that correspond to the
set operations

https:/Ilvtucode.in Page 22

Database Management System [BCS403]

2.3.2 The CARTESIAN PRODUCT (CROSS PRODUCT) Operation

The CARTESIAN PRODUCT operation—also known as CROSS PRODUCT or CROSS JOIN
denoted by x is a binary set operation, but the relations on which it is applied do not have to be
union compatible. This set operation produces a new element by combining every member (tuple)

from one relation (set) with every member (tuple) from the other relation (set)

In general, the result of R(A41, A2, ..., Ax) x S(B1, B2, ..., Bm) is a relation Q with degree n + m
attributes Q(A1, A, ..., An, B1, B2, ..., Bm), in that order. The resulting relation Q has one tuple for
each combination of tuples—one from R and one from S. Hence, if R has ng tuples (denoted as |R| =
nr), and S has ng tuples, then R x S will have nr * ng tuples
Example: suppose that we want to retrieve a list of names of each female employee’s dependents.

FEMALE_EMPS <« Ggender--7(EMPLOYEE)

EMPNAMES <« TtFname, Lname, sss(FEMALE_EMPS)

EMP_DEPENDENTS «— EMPNAMES x DEPENDENT

ACTUAL_DEPENDENTS « oss-esss(EMP_DEPENDENTS)

RESULT <~ TtFname, Lname, Dependent_name (AC TUAL_DEPENDENTYS)

FEMALE_EMPS

Fname [Minit | Lname Ssn Bdate Address gen| Salary| Super_ssn |Dno
Alicia J | Zelaya | 999887777 (1868-07-19 3321Castle, Spnng, TX | F |25000)|987654321| 4
Jennifer | S | Wallace | 987654321 [1541-08-20 | 2891 Berry, Bellaire, TX F |43000|BBBEES555
Joyce A | English/| 458453453 (1872-07-31 | 5831 Rice, Houston, TX| F [25000|333445b56| b
EMP_DEPENDENTS
Fname | Lname Ban Esen Dependent_name | Sex Bdate
Alicia |Zelaya | 900887777 | 333445655 Alice F | 1986-0405 | ...
Alicia | Zelaya | 099887777 | 333445555 Theodare M | 19831095 | ... EMPMAMES
Alicia | Zelaya | O90BB7777 | 333445555 Joy F | 19580503 | ...
Alicia | Zelaya | 999887777 | 087654321 Abner M | 10420028 | . Fname Lname Sen
Alicia |Zelaya | 989887777 | 123456789 Michael M | 19880104 | ... Alicia | Zelaya | 9909887777
Alicia | Zelaya | 999887777 | 123456789 Alice F | 19881230 | ...
Alicia | Zelaya | 900BBY777 | 123456789 Elizabeth F | 19670505 | ... Jennifer | Wallace | 987654321
}enn:fer Wallace | 987654321 | 333445555 Alice F 1986—04-0? }D}'E& EﬂinE-h 453453453
Jennifer | Wallace | 987854321 | 333445555 Theodore M | 1983-10-25
Jennifer | Wallace | 987654321 | 333445555 Joy F | 1958-05-03
Jennifer | Wallace | 987654321 | 987654321 Abner M | 1942-02-28
Jennifer | Wallace | 987654321 | 123456789 Michael M | 1988-01-04
Jennifer | Wallace | 987654321 | 123456789 Alice F | 1888-12-30
Jennifer | Wallace | 9876854321 | 123456789 Elizabeth F | 1867-05-05
Joyce | English | 453453453 | 333445555 Alice F | 1988-04-05
Joyce | English | 453453453 | 333445555 Theodore M | 1983-10-25
Joyce |English | 453453453 | 333445555 Joy F 1958-05-03
Joyce | English | 453453453 | 987654321 Abner M | 1842-02-28
Joyce | English | 4563453453 | 123456789 Michael M | 1988-01-04
Joyce | English | 453453453 | 123456789 Alice F | 1988-12-30
Joyce |English | 453453453 | 123456789 Elizabeth F | 1987-05-05

https:/ivtucode.in Page 23

Database Management System [BCS403]

RESULT

| Fname | Lname | Dependent_name

Jennifer | Wallace Abner

ACTUAL DEPENDENTS
Fname | Lname S=n E=zsn Dependent_name | Sex Bdate
lennifer | Wallace | 987654321 | 987654321 Abner M | 1942-032-28

The CARTESIAN PRODUCT creates tuples with the combined attributes of two relations. We
can SELECT related tuples only from the two relations by specifying an appropriate selection
condition after the Cartesian product.

In SQL, CARTESIAN PRODUCT can be realized by using the CROSS JOIN option in joined
tables

2.4 Binary Relational Operations: JOIN and DIVISION
2.4.1 The JOIN Operation

The JOIN operation, denoted by F=, is used to combine related tuples from two relations into
single “longer” tuples.It allows us to process relationships among relations.The general form of a

JOIN operation on two relations R(41, 42, ..., Ax) and S(B1, Ba, ..., Bn) is
R g <join conditio>S

Example: Retrieve the name of the manager of each department.
To get the manager’s name, we need to combine each department tuple with the employee tuple

whose Ssn value matches the Mgr ssn value in the department tuple

DEFT_MGR « DEPARTMENT 22 o . 5., EMPLOYEE
RESULT & mp - | ame. Frame | DEPT_MGR)
DEPT_MGR
DCname Dnumber Mgr_ssn s Fname | Minit | Lname Ssn
Research b 333445555 | -++ | Franklin T Wong 333445555
Administration 4 887654321 * | Jennifer S Wallace | 987654321
Headqguarters 1 888665500 | - - James E Borg 888665555

https:/ivtucode.in Page 24

Database Management System [BCS403]

The result of the JOIN is a relation Q with n + m attributes Q(A1, Az, ..., An,B1, Ba, ..., Bm in that
order.Q has one tuple for each combination of tuples—one from R and one from S—whenever the
combination satisfies the join condition. This is the main difference between CARTESIAN
PRODUCT and JOIN. In JOIN, only combinations of tuples satisfying the join condition appear
in the result, whereas in the CARTESIAN PRODUCT all combinations of tuples are included in
the result. The join condition is specified on attributes from the two relations R and S and is

evaluated for each combination of tuples.

Each tuple combination for which the join condition evaluates to TRUE is included in the resulting

relation Q as a single combined tuple. A general join condition is of the form
<condition> AND <condition> AND...AND <condition>

where each <condition> is of the form A; 6 B;, Ajis an attribute of R, B is an attribute of S, Ai
and B;j have the same domain, and 6 (theta) is one of the comparison operators {=, < <, >, > #}.A
JOIN operation with such a general join condition is called a THETA JOIN. Tuples whose join
attributes are NULL or for which the join condition is FALSE do not appear in the result.

2.4.2 Variations of JOIN: The EQUIJOIN and NATURAL JOIN
The most common use of JOIN involves join conditions with equality comparisons only. Such a
JOIN, where the only comparison operator used is =, is called an EQUIJOIN.In the result of an

EQUIJOIN we always have one or more pairs of attributes that have identical values in every tuple.

For example the values of the attributes Mgr ssn and Ssn are identical in every tuple of
DEPT MGR (the EQUIJOIN result) because the equality join condition specified on these two

attributes requires the values to be identical in every tuple in the result.

The standard definition of NATURAL JOIN requires that the two join attributes (or each pair of
join attributes) have the same name in both relations. If this is not the case, a renaming operation is
applied first. Suppose we want to combine each PROJECT tuple with the DEPARTMENT tuple that
controls the project.first we rename the Dnumber attribute of DEPARTMENT to Dnum—so that it
has the same name as the Dnum attribute in PROJECT—and then we apply NATURAL JOIN:

PROJ_DEPT «— PROJECT * P (Dname, Dnum, Mgr_ssn, Mgr_start_date) (DEPARTMENT)

The same query can be done in two steps by creating an intermediate table DEPT as follows:

DEPT « P (Dname, Dnum, Mgr_ssn,Mgr_start_date)(DEPARTMENT)

https:/ivtucode.in Page 25

Database Management System [BCS403]

PROJ_DEPT «— PROJECT * DEPT
The attribute Dnum is called the join attribute for the NATURAL JOIN operation, because it is the

only attribute with the same name in both relations.

PROJ_DEPT
Pname Pnumber Plocation Dnum Dname Mgr_ssn Mgr_start_date
ProductX i Bellaire 5 Research 333445555 1988-05-22
ProductY 2 Sugarland 5 Research 333445555 1988-05-22
ProductZ 3 Houston b Research 333445555 1988-06-22
Computerization i0 Stafford 4 Administration | 987654321 1995-01-01
Reorganization 20 Houston 1 Headquarters | BABBE5555 1981-06-19 |
MNewbenefits 30 Stafford 4 Administration | 987654321 1995-01-01 |

If the attributes on which the natural join is specified already have the same names in both relations,
renaming is unnecessary. For example, to apply a natural join on the Dnumber attributes of
DEPARTMENT and DEPT LOCATIONS, it is sufficient to write

DEPT_LOCS — DEPARTMENT * DEPT_LOCATIONS

DEPT_LOCS
Dname Dnumber Mgr_ssn Mgr_start_date Location
Headquarters 1 888665555 1981-06-18 Houston
Administration 4 087654321 1885-01-01 Stafford
Research 5 333445555 1988-05-22 Bellaire
Research 5 33344555658 189E88-05-22 Sugarand
Research b 333445555 1988-05-22 Houston

In general, the join condition for NATURAL JOIN is constructed by equating each pair of join
attributes that have the same name in the two relations and combining these conditions with AND.
If no combination of tuples satisfies the join condition, the result of a JOIN is an empty relation with

zero tuples.

A more general, but nonstandard definition for NATURAL JOIN is
¥ .5
Q& B¥) (<tistzs 1

where,
<listl>: list of i attributes from R,
<list2> : list of i attributes from S

The lists are used to form equality comparison conditions between pairs of corresponding attributes
and then the conditions are then ANDed together. Only the list corresponding to attributes of the first
relation R—<list1>— is kept in the result Q.

https:/ivtucode.in Page 26

Database Management System [BCS403]

In general, if R has ng tuples and S has ns tuples, the result of a JOIN operation R ¥ Sis condition> S
will have between zero and nr * ns tuples. The expected size of the join result divided by the
maximum size nr * ns leads to a ratio called join selectivity, which is a property of each join
condition. If there is no join condition, all combinations of tuples qualify and the JOIN degenerates

into a CARTESIAN PRODUCT, also called CROSS PRODUCT or CROSS JOIN.

A single JOIN operation is used to combine data from two relations so that related information can
be presented in a single table. These operations are also known as inner joins. Informally, an inner
join is a type of match and combine operation defined formally as a combination of CARTESIAN
PRODUCT and SELECTION.The NATURAL JOIN or EQUIJOIN operation can also be specified
among multiple tables, leading to an n-way join. For example, consider the following three-way join:

((PROJECT b4 o o DEPARTMENT) i EMPLOYEE)

Mar san="3San

This combines each project tuple with its controlling department tuple into a single tuple, and then
combines that tuple with an employee tuple that is the department manager. The net result is a
consolidated relation in which each tuple contains this project-department-manager combined
information.
In SQL, JOIN can be realized in several different ways

- The first method is to specify the <join conditions> in the WHERE clause, along with any

other selection conditions.
- The second way is to use a nested relation

- Another way is to use the concept of joined tables
2.4.3 A Complete Set of Relational Algebra Operations

The set of relational algebra operations {c, , U, p, —, X} is a complete set; that is, any of the other
original relational algebra operations can be expressed as a sequence of operations from this set.
For example, the INTERSECTION operation can be expressed by using UNION and MINUS as

follows:
RNS=RUS-(R-SU(S-R))

As another example, a JOIN operation can be specified as a CARTESIAN PRODUCT followed by a
SELECT operation,

R Mﬁmndltmnr‘s o ﬂa:_\;.znn._hLmn_u[L‘q % 5)

https:/Ivtucode.in Page 27

Database Management System [BCS403]

Similarly, a NATURAL JOIN can be specified as a CARTESIAN PRODUCT preceded by
RENAME and followed by SELECT and PROJECT operations. Hence, the various JOIN operations

are also not strictly necessary for the expressive power of the relational algebra.
2.4.4 The DIVISION Operation

The DIVISION operation, denoted by +, is useful for a special kind of query that sometimes occurs
in database applications. An example is Retrieve the names of employees who work on all the
projects that ‘John Smith’ works on. To express this query using the DIVISION operation, proceed

as follows.

* First, retrieve the list of project numbers that ‘John Smith” works on in the intermediate
relation SMITH_PNOS:

SSN_PNOS « ng__ 5. (WORKS_ON)

* Next, create a relation that includes a tuple <Pno, Essn> whenever the employee whose Ssn is

Essn works on the project whose number is Pno in the intermediate relation SSN__PNOS:

SMITH < o¢, e b AND Lname—smit \EMPLOYEE)
SMITH_PNOS &« np .(WORKS-ON B< < SMITH)

* Finally, apply the DIVISION operation to the two relations, which gives the desired

employees’ Social Security numbers:

SSNS(Ssn) « SSN_PNOS + SMITH_PNOS
RESULT & Tr e 1 name(SSNS % EMPLOYEE)

Lname

(a)
SSN_PNOS

Eoen Pro SENS
123456789 | 1
193456789 | 2 Sen
566884444 | 3 123456788
453453453 | 1
453453453 | o 453493433
333445555 | 9
333445555 | 3
333445555 | 10
333445555 | 20
999887777 | 30 SMITH_PNOS
009887777 | 10
087987387 | 10 Pno
987987087 30 1
087654321 | 30
0987654321 | 20 2
888665555 | 20

https:/ivtucode.in Page 28

Database Management System [BCS403]

In general, the DIVISION operation is applied to two relations R(Z) + S(X), where the attributes of
R are a subset of the attributes of S; that is, X € Z.Let Y be the set of attributes of R that are not
attributes of S; that is, Y = Z — X (and hence Z = X U Y). The result of DIVISION is a relation T(Y)
that includes a tuple t if tuples tr appear in R with tr [Y] =t, and with tr [X] = ts for every tuple ts in
S. This means that, for a tuple t to appear in the result T of t

Figure below illustrates a DIVISION operation where X = {4}, Y= {B}, and Z = {4, B}.

R s
A B A
ai b1 at
az b1 a9
a3 b1
ad b1 a3
at b2 T
as b2
az b3 =
a3 b3 s
ad b3 b4
ai b4
az b4
a3 b4

The tuples (values) b1 and b4 appear in R in combination with all three tuples in S; that is why they
appear in the resulting relation 7. All other values of B in R do not appear with all the tuples in S and
are not selected: H2 does not appear with @2, and b3 does not appear with al.

The DIVISION operation can be expressed as a sequence of w, x, and — operations as follows:

T1 < my(R)
12 n (S x T1) = R)
T T1-T2

https:/ivtucode.in Page 29

Database Management System [BCS403]

Table 6.1 Operations of Relational Algebra

OPERATION PURPOSE NOTATION

SELECT Selects all tuples that satisfy the selection condition s R
frﬂln a relation R_ <selection conditon:

PROJECT Produces a new relation with only some of the attrib- s L)

utes of R, and removes duplicate tuples.

THETA JOIN Produces all combinations of tuples from R, and R, N — .1
that satisty the join condition. '

EQUUOIN Produces all the combinations of tuples from R, and RES, .. R, OR
R, that satisfy a join condition with only equality N RS
comparisons. i <join attritutes2>) 2

NATURAL JOIN Same as EQUUOIN except that the join attributesof R, Ry*_ R,

are not included in the resulting relation; if the join GRS
attributes have the same names, they do not have to i L
P <join attributes 2>) 2
be specified at all. ORR, * R,
UNION Produces a relation that includes all the tuples in R, R, U R,
or R, or both R, and R;; R, and R, must be union }
compatible.

INTERSECTION Produces a relation that includes all the tuplesin both R R
R, and R;; R, and R, must be union compatible.

DIFFERENCE Produces a relation that includes all the tuples in R, R, -R,
that are not in R; R, and R, must be union compatible.

CARTESIAN Produces a relation that has the attributes of R, and R, X R,

PRODUCT R, and includes as tuples all possible combinations of)

tuples from R, and R..

DIVISION Produces arelation R(X) that includes all tuples ¢ X] R,(Z) + R(Y)
in R,(Z) that appear in R, in combination with every
tuple from R,(¥), where Z=X U Y.

2.4.5 Notation for Query Trees

Query tree (query evaluation tree or query execution tree) is used in relational systems to represent
queries internally. A query tree is a tree data structure that corresponds to a relational algebra
expression. It represents the input relations of the query as leaf nodes of the tree, and represents the

relational algebra operations as internal nodes.

An execution of the query tree consists of executing an internal node operation whenever its
operands represented by its child nodes are available, and then replacing that internal node by the
relation that results from executing the operation. The execution terminates when the root node is

executed and produces the result relation for the query.

https:/ivtucode.in Page 30

Database Management System [BCS403]

Example: For every project located in ‘Stafford’, list the project number, the controlling department

number, and the department manager’s last name, address, and birth date.

RF'I'IL:I'H]}BF, Drnum, Lname, Address, Bdatel: HGF‘iGDEﬁDﬂ:'Stalﬁer'{ PROJECT))

B (DEPARTMENT)) B (EMPLOYEE))

Dnum=0number Mar_san=Szn

% P Pnumber,P.Dnum,E.Lname,E Address E.Bdate

(3)
™ D.Mgr_ssn=E.Ssn

(2) / -
* P.Dnum=D.Dnumber M EMPLOYEE
- /

9 p Plocation= ‘Stafford’ l D —— DEPARTMENT

Y
(P PROJECT

Leafnodes P, D, and E represent the three relations PROJECT, DEPARTMENT, and EMPLOYEE.

The relational algebra operations in the expression are represented by internal tree nodes. The query
tree signifies an explicit order of execution in the following sense. The node marked (1) must begin
execution before node (2) because some resulting tuples of operation (1) must be available before
we can begin to execute operation (2). Similarly, node (2) must begin to execute and produce results

before node (3) can start execution, and so on.

A query tree gives a good visual representation and understanding of the query in terms of the
relational operations it uses and is recommended as an additional means for expressing queries in

relational algebra.

https:/ivtucode.in Page 31

Database Management System [BCS403]

2.5 Additional Relational Operations

2.5.1 Generalized Projection

The generalized projection operation extends the projection operation by allowing functions of
attributes to be included in the projection list. The generalized form can be expressed as:
7FL, F2, ..., Fn (R)

where Fi, F», ..., Fy are functions over the attributes in relation R and may involve arithmetic
operations and constant values.
The generalized projection helpful when developing reports where computed values have to be
produced in the columns of a query result. For example,consider the relation EMPLOYEE (Ssn,
Salary,Deduction, Years service). A report may be required to show

Net Salary = Salary — Deduction,

Bonus = 2000 * Years_service, and

Tax = 0.25 * Salary.

generalized projection combined with renaming :
REPORT « P(Ssn, Net_salary, Bonus, Tax)(TCSsn, Salary — Deduction, 2000 *

Years_service, 0.25 * Salary(EMPLOYEE)).

2.5.2 Aggregate Functions and Grouping

Aggregate functions are used in simple statistical queries that summarize information from the
database tuples.Common functions applied to collections of numeric values include
SUM,AVERAGE, MAXIMUM, and MINIMUM.The COUNT function is used for counting tuples
or values. For example, retrieving the average or total salary of all employees or the total number of

employee tuples.

Grouping the tuples in a relation by the value of some of their attributes and then applying an
aggregate function independently to each group. For example , group EMPLOYEE tuples by Dno, so
that each group includes the tuples for employees working in the same department. We can then list
each Dno value along with, say, the average salary of employees within the department, or the

number of employees who work in the department.

https:/ivtucode.in Page 32

Database Management System [BCS403]

Aggregate function operation can be defined by using the symbol J (script F) :

<grouping attributes> <3 <function list> ()

Where ,

<grouping attributes™> : list of attributes of the relation specified in R

<function list> : list of (<function> <attribute>) pairs.

<function> - such as SUM, AVERAGE, MAXIMUM, MINIMUM,COUNT

<attribute> is an attribute of the relation specified by R
The resulting relation has the grouping attributes plus one attribute for each element in the function
list.
Example: To retrieve each department number, the number of employees in the department, and

their average salary, while renaming the resulting attributes

PR(Dno, No_of_employees, Average_sal)(Dno 3 COUNT Ssn, AVERAGE Salary (EMPLOYEE))

The aggregate function operation.

8. PR Dne, Mo of_employees, Average sal)!Ono 3 COUNT SemsAVERAGE sdaryl EMPLOYEE)).
b. oo 3 COUNT Sen, AVERAGE Salary! EMPLOYEE).

C 3 COUNT Ssn. AVERAGE Salary EMPLOYEE).

R
(@) | Dno MNo_of employeas Average sal (®) [pno Count_ssn Average salary
b 4 33250 o 4 33250
< 3 31000 4 3 31000
1 1 55000 1 1 59000

{c) | Count_ssn Average_salary
8 35125

2.5.3 Recursive Closure Operations
Recursive closure operation is applied to a recursive relationship between tuples of the same type,
such as the relationship between an employee and a supervisor.
Example : Retrieve all supervisees of an employee e at all levels—that is, all employees e’ directly
supervised by e, all employees e’J directly supervised by each employee e’, all employees e’
directly supervised by each employee e¢’” and so on.

BORG_SS5N « ng_ (0 2me— tlames’ AND Ln&me:-,k,rg{EMPL«DYEE]J

SUPERVISION(Ssn1, Ssn2) « g grer conl EMPLOYEE)
RESULT1(Ssn) « ng_,(SUPERVISION B o . - BORG SSN)

https:/ivtucode.in Page 33

Database Management System [BCS403]

SUPERVISION
(Borg's Ssn is BBBE65LEL)
(Ssn) (Super_ssn) RESULTH
Ssni Ssn2 San
123456788 | 333445606565 999445555
333445500 | BBBE6H5HED 087654371
099887777 | 987654321 (Supervised by Borg)
087654321 | BBBEB55HLD
666884444 | 333445555
453453453 | 3334455565
087087987 | 9B7654321
888665555 | null

To retrieve all employees supervised by Borg at level 2—that is, all employees e’ supervised by
some employee ¢’ who is directly supervised by Borg—we can apply another JOIN to the result

of the first query, as follows:

RESULT2(Ssn) — ng_,(SUPERVISION b< . o RESULTT)

RESULT2

Ssn
123456789
489887777
666884444
453453453
087087087

(Supervised by
Borg's subordinates)

To get both sets of employees supervised at levels 1 and 2 by ‘James Borg’, we can apply the

UNION operation to the two results, as follows:

RESULT « RESULT2 « RESULTH

2.5.4 OUTER JOIN Operations

The JOIN operations match tuples that satisfy the join condition. For example, for a NATURAL
JOIN operation R * S, only tuples from R that have matching tuples in S—and vice versa—

appear in the result. Hence, tuples without a matching (or related) tuple are eliminated from the

https:/Ivtucode.in Page 34

Database Management System [BCS403]

JOIN result. Tuples with NULL values in the join attributes are also eliminated.This type of join,
where tuples with no match are eliminated, is known as an inner join.
A set of operations, called outer joins, were developed for the case where the user wants to keep
all the tuples in R, or all those in S, or all those in both relations in the result of the JOIN,

regardless of whether or not they have matching tuples in the other relation.

For example, suppose that we want a list of all employee names as well as the name of the
departments they manage if they happen to manage a department; if they do not manage one, we

can indicate it with a NULL value. We can apply an operation LEFT OUTER JOIN, denoted by

I~

to retrieve the result as follows:
TEMP « (EMPLOYEE g, DEPARTMENT)

RESULT « :H:FFIEITIE,, Minit, Lname, LTEMP}

Dname

The LEFT OUTER JOIN operation keeps every tuple in the first, or left, relation R in
R ¢ S; if no matching tuple is found in S, then the attributes of S in the join result are

filled or padded with NULL values.

RESULT
Fname Minit | Lname Dname
John B Smith MNULL
Franklin T Wong Research
Alicia J Zelaya NULL
Jennifer 5 Wallace | Administration
Ramesh K Marayan | NULL
Joyce A English MNULL
Ahmad v Jabbar NULL
James E Borg Headquarters

A similar operation, RIGHT OUTER JOIN, denoted by [3] keeps every tuple in the second,
1
or right, relation S in the result of R t?-i]' y S.

A third operation, FULL OUTER JOIN, denoted by =] , keeps all tuples in both the left
and the right relations when no matching tuples are found, padding them with NULL values as
needed.

2.5.5 The OUTER UNION Operation

The OUTER UNION operation was developed to take the union of tuples from two relations

that have some common attributes, but are not union (type) compatible.This operation will take

https:/lvtucode.in Page 35

Database Management System [BCS403]

the UNION of tuples in two relations R(X, Y) and S(X, Z) that are partially compatible,
meaning that only some of their attributes, say X, are union compatible.
The attributes that are union compatible are represented only once in the result, and those
attributes that are not union compatible from either relation are also kept in the result relation
T(X, Y, Z). Two tuples #; in R and # in S are said to match if #[X]= #[X]. These will be
combined (unioned) into a single tuple in z. Tuples in either relation that have no matching tuple
in the other relation are padded with NULL values.
For example, an OUTER UNION can be applied to two relations whose schemas are:
STUDENT(Name, Ssn, Department, Advisor)
INSTRUCTOR(Name, Ssn, Department, Rank)
Tuples from the two relations are matched based on having the same combination of values of
the shared attributes—Name, Ssn, Department. All the tuples from both relations are included in
the result, but tuples with the same (Name, Ssn, Department) combination will appear only once
in the result. Tuples appearing only in STUDENT will have a NULL for the Rank attribute,
whereas tuples appearing only in INSTRUCTOR will have a NULL for the Advisor attribute.
A tuple that exists in both relations, which represent a student who is also an instructor, will
have values for all its attributes The resulting relation, STUDENT OR INSTRUCTOR, will
have the following attributes:

STUDENT OR INSTRUCTOR(Name, Ssn, Department, Advisor, Rank)

2.6 Examples of Queries in Relational Algebra

Query 1. Retrieve the name and address of all employees who work for the ‘Research’ department.

RESEARCH_DEPT < g5 .. (DEPARTMENT)
RESEARCH EMPS « (RESEARCH DEPT b4 o\
RESULT & | name, Adcress{ RESEARCH_EMPS)

EMPLOYEE)

As a single in-line expression, this query becomes:

RFr!arna, Lname, Address [.ﬁDnamE:'lb:waiuh'{DEPARTM ENT M :l:lr'nl: EMPLOYEE))

Dnumber

Query 2. For every project located in ‘Stafford’, list the project number, the controlling department

number, and the department manager’s last name, address, and birth date.

STAFFORD_PROJS « Opipionsuufiors PROJECT)

CONTR_DEPTS « (STAFFORD PROJS B4 o DEPARTMENT)
PROJ_DEPT_MGRS « (CONTR_DEPTS I, o EMPLOYEE)
RESULT ¢ Mg umber. Divam, Lrame, Address, Bate! PROJ_DEPT_MGRS)

https:/Ivtucode.in Page 36

Database Management System [BCS403]

Query 3. Find the names of employees who work on all the projects controlled by department

number 5.

DEPT5_PROJS « g0 (M umber Onumms (PROJECT))
EMP_PROJ & p(sen. o) (Migsen, prol WORKS_ON))
RESULT EMP_SSNS — EMP_PROJ + DEPT5_PROJS
RESULT < n,___ ;. (RESULT_EMP_SSNS * EMPLOYEE)

Query 4. Make a list of project numbers for projects that involve an employee whose last name is

‘Smith’, either as a worker or as a manager of the department that controls the project.

SMITHS(Essn) & ng_ (o, .(EMPLOYEE))
SMITH_WORKER_PROJS « n5,,,(WORKS_ON * SMITHS)

MGRS ¢ T Drumber EMPLOYEE 24 o\ DEPARTMENT)
SMITH_MANAGED_DEPTS(Dnum) « %ig_ o (60, o MGRS))

SMITH_MGR_PROJS(Pno)} « Rp, mpe SMITH_MANAGED.DEPTS * PROJECT)
RESULT + (SMITH_WORKER_PROIS 1w SMITH.MGR_PROIS)

Query 5. List the names of all employees with two or more dependents.

T'1(Ssn, No_of dependents)e—¢__ 3 COUNT Depandent ame \DEPENDENT)

T2+ ﬁNu_Df_dBan-dentE}ZILTl)
RESULT =, _ ;. (T2 % EMPLOYEE)

Query 6. Retrieve the names of employees who have no dependents.

ALL_EMPS « ng_(EMPLOYEE)

EMPS_WITH_DEPS(Ssn) — Re....DEPENDENT)
EMPS_WITHOUT DEPS « (ALL_EMPS — EMPS_WITH_DEPS)
RESULT & m, .. Frame! EMPS_WITHOUT_DEPS * EMPLOYEE)

Query 7. List the names of mana gers who have at least one dependent.

MGRS(Ssn) « ., . (DEPARTMENT)
EMPS_WITH_DEPS{Ssn) « n__ (DEPENDENT)
MGRS_WITH_DEPS « (MGRS m EMPS_WITH_DEPS)
RESULT —mn,___ - (MGRS_WITH DEPS * EMPLOYEE)

https:/ivtucode.in Page 37

Database Management System [BCS403]

Chapter 3: Mapping Conceptual Design into a Logical Design

3.1Relational Database Design using ER-to-Relational mapping

Procedure to create a relational schema from an Entity-Relationship (ER)

C:_F::me @;D Lnams
Name) (Address)) (Salary)

= S WORKS_FOR ™ @
=T

¢ Namber_of_ smplayaesie~] DEPARTMENT |

1
CONTROLS
Hnu@ N
N

: PROJECT |
&=
& T CLosation >

EMPLOYEE

Supernsor Supsnnses 1

1 SUPERVISION 5N

" DEPENDENTS OF

M

| DEPENDENT |

Fig 3.1: ER diagram of company database

Step 1: Mapping of Regular Entity Types

For each regular entity type, create a relation R that includes all the simple attributes of E
Include only the simple component attributes of a composite attribute

Choose one of the key attributes of E as the primary key for R

If the chosen key of E is a composite, then the set of simple attributes that form it will

together form the primary key of R.

https:/Ivtucode.in Page 38

Database Management System [BCS403]

= [f multiple keys were identified for E during the conceptual design, the information
describing the attributes that form each additional key is kept in order to specify secondary
(unique) keys of relation R

= Inour example-COMPANY database, we create the relations EMPLOYEE, DEPARTMENT,
and PROJECT

= we choose Ssn, Dnumber, and Pnumber as primary keys for the relations EMPLOYEE,
DEPARTMENT, and PROJECT, respectively

= The relations that are created from the mapping of entity types are called entity relations

because each tuple represents an entity instance.

EMPLOYEE
| Fname | Minit | Lname | Ssn | Bdate | Address | Sex | Salary |

DEPARTMENT

| Dname | Dnumber |

PROJECT

| Pname | Pnumber | Plocation

Step 2: Mapping of Weak Entity Types

» For each weak entity type, create a relation R and include all simple attributes of the entity
type as attributes of R

» Include primary key attribute of owner as foreign key attributes of R

= In our example, we create the relation DEPENDENT in this step to correspond to the weak
entity type DEPENDENT

= We include the primary key Ssn of the EMPLOYEE relation—which corresponds to the
owner entity type—as a foreign key attribute of DEPENDENT; we rename it as Essn

= The primary key of the DEPENDENT relation is the combination {Essn,Dependent name},
because Dependent name is the partial key of DEPENDENT

= [t is common to choose the propagate (CASCADE) option for the referential triggered action
on the foreign key in the relation corresponding to the weak entity type, since a weak entity
has an existence dependency on its owner entity.

= This can be used for both ON UPDATE and ON DELETE.

DEPENDENT
Essn Dependent_name | Sex | Bdate Relationship

https:/ivtucode.in Page 39

Database Management System [BCS403]

Step 3: Mapping of Binary 1:1 Relationship Types
= For each binary 1:1 relationship type R in the ER schema, identify the relations S and 7 that
correspond to the entity types participating in R
= There are three possible approaches:
- foreign key approach
- merged relationship approach
- crossreference or relationship relation approach
1. The foreign key approach
= Choose one of the relations—S, say—and include as a foreign key in S the primary key of 7.
= [t is better to choose an entity type with total participation in R in the role of §
= Include all the simple attributes (or simple components of composite attributes) of the 1:1
relationship type R as attributes of S.
= In our example, we map the 1:1 relationship type by choosing the participating entity type
DEPARTMENT to serve in the role of S because its participation in the MANAGES
relationship type is total
= We include the primary key of the EMPLOYEE relation as foreign key in the
DEPARTMENT relation and rename it Mgr_ssn.
= We also include the simple attribute Start date of the MANAGES relationship type in the
DEPARTMENT relation and rename it Mgr start date
2. Merged relation approach:
= merge the two entity types and the relationship into a single relation
= This is possible when both participations are total, as this would indicate that the two
tables will have the exact same number of tuples at all times.
3.Cross-reference or relationship relation approach:
= set up a third relation R for the purpose of cross-referencing the primary keys of the two
relations S and T representing the entity types.
= required for binary M:N relationships
= The relation R is called a relationship relation (or sometimes a lookup table), because each
tuple in R represents a relationship instance that relates one tuple from S with one tuple
from T
= The relation R will include the primary key attributes of S and T as foreign keys to S and T.
= The primary key of R will be one of the two foreign keys, and the other foreign key will be
a unique key of R.

https:/Ivtucode.in Page 40

Database Management System [BCS403]

= The drawback is having an extra relation, and requiring an extra join operation when

combining related tuples from the tables.

Step 4: Mapping of Binary 1:N Relationship Types
= For each regular binary 1:N relationship type R, identify the relation S that represents the
participating entity type at the N-side of the relationship type.
= Include as foreign key in S the primary key of the relation 7 that represents the other entity
type participating in R
= Include any simple attributes (or simple components of composite attributes) of the 1:N
relationship type as attributes of S
= In our example, we now map the 1:N relationship types WORKS FOR, CONTROLS, and
SUPERVISION
= For WORKS FOR we include the primary key Dnumber of the DEPARTMENT relation as
foreign key in the EMPLOYEE relation and call it Dno.
= For SUPERVISION we include the primary key of the EMPLOYEE relation as foreign key
in the EMPLOYEE relation itself—because the relationship is recursive—and call it
Super ssn.
= The CONTROLS relationship is mapped to the foreign key attribute Dnum of PROJECT,
which references the primary key Dnumber of the DEPARTMENT relation.
Step 5: Mapping of Binary M:N Relationship Types
= For each binary M:N relationship type
* Create a new relation S
* Include primary key of participating entity types as foreign key attributes in S
* Include any simple attributes of M:N relationship type
= In our example, we map the M:N relationship type WORKS ON by creating the relation
WORKS ON.We include the primary keys of the PROJECT and EMPLOYEE relations as
foreign keys in WORKS ON and rename them Pno and Essn, respectively.
= We also include an attribute Hours in WORKS ON to represent the Hours attribute of the
relationship type.
® The primary key of the WORKS ON relation is the combination of the foreign key

attributes {Essn, Pno}.

WORKS_ON

| Essn | Pno | Hours |

https:/Ivtucode.in Page 41

Database Management System [BCS403]

= The propagate (CASCADE) option for the referential triggered action should be specified
on the foreign keys in the relation corresponding to the relationship R, since each
relationship instance has an existence dependency on each of the entities it relates. This
can be used for both ON UPDATE and ON DELETE.

Step 6: Mapping of Multivalued Attributes

» For each multivalued attribute
* Create a new relation
* Primary key of R is the combination of 4 and K
* Ifthe multivalued attribute is composite, include its simple components

= [n our example, we create a relation DEPT _LOCATIONS

= The attribute Dlocation represents the multivalued attribute LOCATIONS of
DEPARTMENT, while Dnumber—as foreign key—represents the primary key of the
DEPARTMENT relation.

= The primary key of DEPT _LOCATIONS is the combination of {Dnumber, Dlocation}

= A separate tuple will exist in DEPT_LOCATIONS for each location that a department has

= The propagate (CASCADE) option for the referential triggered action should be specified
on the foreign key in the relation R corresponding to the multivalued attribute for both ON

UPDATE and ON DELETE.

EMPLOYEE
| Fname | Minit | Lname| Ssn | Bdate | Address | Sex | Salary | Super_ssn| Dno |

ﬂna*
DEPARTMENT
| Dname | Dnumber | Mgr_ssn| Mgr_staﬂ_date|
lt“

DEPT_LOCATIONS

| Dnumber | Dlocation |
|

PROJECT

| Pname | Pnumber | Plocation | Dnum
[

WORKS_ON

‘ Essn ‘ Pno ‘ Hours ‘

DEPENDENT

‘ Essn ‘ Dependent name | Sex ‘ Bdate ‘ Relationship
|

https:/Ivtucode.in Page 42

Database Management System [BCS403]

Step 7: Mapping of N-ary Relationship Types

= For each n-ary relationship type R
* Create a new relation S to represent R
* Include primary keys of participating entity types as foreign keys
* Include any simple attributes as attributes

= The primary key of S is usually a combination of all the foreign keys that reference the
relations representing the participating entity types.

= For example, consider the relationship type SUPPLY.This can be mapped to the relation
SUPPLY whose primary key is the combination of the three foreign keys {Sname,

Part_no, Proj name}.

SUPPLIER

S N

PROJECT
‘ F'mi_name‘ |

SUPPLIER

PROJECT

Part_no

PART

)
SUPPLY

_‘ Sname | ij_name| Part_no | Quantity

Figure 3.2: Mapping the n-ary relationship type SUPPLY

https:/ivtucode.in Page 43

